Computers and Geosciences 118 (2018) 79-85

Contents lists available at ScienceDirect

) TERS
GEOSCIENCES

Computers and Geosciences a

&>
2>

journal homepage: www.elsevier.com/locate/cageo

Detection of transverse cirrus bands in satellite imagery using deep )

Check for

learning™ e

Jeffrey Miller™", Udaysankar Nair’, Rahul Ramachandran”, Manil Maskey”

@ Department of Atmospheric Science, University of Alabama in Huntsville, USA
® NASA Marshall Space Flight Center, Huntsville, AL, USA

ARTICLE INFO ABSTRACT

We demonstrate the viability of using a convolutional neural network (CNN) for facial recognition of meteor-
ological phenomena in satellite imagery. Transfer learning was used to fine tune the widely used VGG-16 net-
work architecture and allow the network to successfully detect (94% accuracy) the presence of transverse cirrus
bands (TCBs) in NASA MODIS and VIIRS satellite browse imagery. The CNN exhibited better performance
compared to a random forest classifier (84% accuracy) and was further validated by applying it to NASA satellite
browse imagery in order to create a multi-year (2013-2015) global heat map of TCB occurrence. The annual heat
map shows spatial patterns that are consistent with known mechanisms for the generation of TCBs, providing
confidence in the CNN classifications. Our study shows that CNNs are well suited for meteorological phenomena
detection due to their generalization capabilities and strong performance. An immediate application of our work
intends to enable phenomena-based search of big satellite imagery databases. With additional modifications, the
CNN could be utilized for other applications such as providing situational awareness to operational forecasters or
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developing phenomena specific climatologies.

1. Introduction

Automated detection of meteorological phenomena in satellite and
radar observations is important for both research and applications. For
example, pattern recognition algorithms are operationally utilized to
detect tornadic signatures in radar data (Mitchell et al., 1998) and for
estimating tropical cyclone intensity from satellite imagery (Bankert
and Tag, 2002). In research studies, phenomena detection is utilized to
compile climatology of meteorological features. Such climatologies are
used to investigate a variety of aspects related to meteorological phe-
nomena, including their relationship to large scale environmental
conditions, forcing factors, and influence of climate variability on
trends in occurrence of the phenomena (Mohr and Zipser, 1996; Morel
and Senesi, 2002; Gray and Dacre, 2006; Rife et al., 2010; Berry et al.,
2011). Most detection algorithms currently utilized for such purposes
are rule-based and phenomena-specific. Development of rules relies on
domain expertise, often leveraging features identified by scientists in-
volved in phenomena specific research.

Recent advances in deep learning have enabled development of
neural networks that are capable of solving complex pattern recognition

issues. Image classification using convolutional neural networks (CNNs)
(LeCun et al., 1989) is one such example. Unlike prior work on the use
of neural networks for specific phenomena detection tasks such as cloud
classification (Bankert, 1994; Azimi-Sadjadi et al., 1996; Tian et al.,
1999), CNNs are less reliant on domain expertise and offer a general-
ized approach to meteorological phenomena detection. Further, CNN
algorithms are able to utilize accelerated computing capabilities offered
by graphical processing units (GPU), resulting in 40 times reduction in
network training time. In addition, transfer learning-a technique where
a CNN that was pre-trained for general image classification is re-trained
for a specific task (such as detection of transverse cirrus bands)-helps to
reduce the time necessary for training the network while also reducing
the number of images required to properly train the network.

We test the feasibility of utilizing a CNN as a generalized framework
for phenomena detection by training a CNN to detect complex me-
teorological features—namely, transverse cirrus bands (TCBs)
(Fig. la—c)-in NASA Moderate Resolution Imaging Spectroradiometer
(MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) browse
imagery. Although this browse imagery contains only a small subset
(three out of 36 spectral channels) of the MODIS spectral information,
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Fig. 1. Examples of images used for training (a-c shows examples of images with TCBs; d-f shows examples of scenes images without transverse bandsTCBs).

we propose that the morphological characteristics associated with the
TCBs are unique enough to enable detection by CNNs. Identifying TCBs
in satellite imagery is challenging since they closely resemble cloud
features associated with atmospheric gravity waves and horizontal
convective rolls (HCRs).

TCBs are ice clouds with very characteristic morphology and often
form in association with other weather phenomena such as mesoscale
convective systems (MCS), tropical cyclones, and jet streaks (Knox
et al., 2010). The physical processes that are important to the formation
of TCBs are not well understood, yet these processes are important for
the analysis of clear air turbulence (CAT) using meteorological fields
(Knox et al., 2010). Analysis of long term climatology of TCBs and co-
occurring environmental conditions are key to developing such an un-
derstanding. Due to human limitations associated with manual analysis
of satellite imagery, only a short-term climatological analysis has been
available to researchers (Lenz et al., 2009). This limitation is only one
of the important motivations for the development of automated de-
tection of TCBs in satellite imagery.

Furthermore, because TCBs are often associated with CAT, aviation
forecasters have used them as a proxy for CAT in satellite imagery
(Ellrod, 1989). Analysis by Lenz et al. (2009) throughout a four-month
period over the United States found that nearly every case of TCBs was
associated with light turbulence and slightly less than half of those
cases were further associated with moderate or greater turbulence.
Thus, automated detection of TCBs has substantial operational utility in
aviation weather forecasting.

In this study, we demonstrate for the first time (to the best of our
knowledge) the feasibility of automated detection of TCBs in satellite
imagery by using deep learning. Another unique aspect of this approach
is the use of both spectral and morphological information for the de-
tection of meteorological phenomena.
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The subsequent sections are organized as follows: Section 2 provides
deep learning theory and background information on CNNs; Section 3
discusses the network architecture and the training and testing data;
Section 4 illuminates the results and presents a proof of concept; and
Section 5 concludes with a result synthesis discussion.

2. Theory and background

Many cloud detection techniques employ algorithms that use time
and seasonal-dependent thresholds (Jedlovec et al., 2008; Hagolle
et al., 2010; Zhu et al., 2015). These particular methodologies use
spatial analysis techniques to detect the contrast between reflected
energy from clouds and surrounding surfaces in order to determine the
extent of cloud cover in satellite imagery. This approach, however,
struggles when the sun is at a low angle or when the surrounding
surfaces are highly reflective (for example, in snowy or icy areas)
(Jedlovec, 2009). Therefore, the task of identifying TCBs within a sa-
tellite image requires a more detailed process in order to capture the
features of the image as a whole. Analyzing details within an image is
precisely the type of task for which deep neural networks, particularly
CNNs, have excelled. Not only do CNNs garner impressive results, but
these types of neural networks also generalize very well across very
different datasets (Penatti et al., 2015).

2.1. Convolutional neural networks

CNNs, like traditional neural networks, are made up of neurons with
learnable weights and biases. The main difference between a CNN and a
traditional neural network is that a CNN performs convolution on the
input image rather than general matrix multiplication. CNNs are useful
for image -classification because the network is able to learn
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