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A B S T R A C T

Least-square reverse time migration (LSRTM) has been widely accepted because of its exceptional performance in
mitigating migration artifacts and preserving the reflection amplitude. Due to the ill-posedness of the inverse
problem, regularization methods or constraints must be applied to the reflectivity model. In this paper, we
propose a novel iterative LSRTM framework that is regularized by a lowrank constraint. The lowrank constraint is
applied along the geological structure of the subsurface reflectivity image and thus can also be called structural
lowrank constraint. The lowrank constraint is applied by iteratively applying a rank reduction operator that is
based on the lowrank approximation theory. The rank reduction operator applied along the structure direction
can effectively remove those artifacts caused from sparse shot/receiver sampling or other circumstances.
Compared with the traditionally used smoothness based constraint, the lowrank constraint is more capable of
removing noise while preserving edge details. Since the constraint is applied in post-stack seismic image, the extra
computational cost caused by the singular value decomposition (SVD) of the rank reduction operator is negligible
compared with the computational cost of the migration operator. Numerical examples with different levels of
structural complexity are used to demonstrate the effectiveness and validity of the proposed algorithm.

1. Introduction

Seismic migration (imaging) is a process to map the multi-
dimensional seismic data onto a 2D/3D image for subsurface character-
ization (McMechan, 1983; Levin, 1984; Chang and McMechan, 1989,
1986; 1987, 1994; Hubral et al., 1996; Hokstad et al., 1998; Hokstad and
Sollie, 1998; Hokstad, 2000; Sun et al., 2006). From the mathematical
point of view, seismic migration can be treated as a linear inverse
problem (Chen et al., 2017c). Traditional migration applies the adjoint
operator, instead of an inverse operator, to the observed data (Wu and
Bai, 2018). Thus, the subsurface reflectivity image resulted from the
traditional migration method will inevitably contain artifacts or are not
of true amplitude (Zhang et al., 2015). These artifacts are caused by a
complicated mechanism that is related with a variety of reasons, e.g.,
sparse shot/receiver sampling, narrow shot-receiver apertures, and
limited signal bandwidth. A better way to compute the subsurface image

is by inverting the forward operator (or demigration operator) in the
linear inverse problem, which is called least-squares migration (LSM)
(Ronen and Liner, 2000). Due to the extremely large size of the forward
operator and the ill-poseness of the inversion problem, an iterative solver
together with some regularization constraints must be utilized (Xue et al.,
2016c; Dutta, 2016). Due to different migration operators, the LSM can
be grouped into several types. The least-squares Kirchhoff migration
takes advantage of the ray-tracing strategy for the migration operator and
is computationally efficient (Nemeth et al., 1999; Duquet et al., 2000).
The least-squares one-wave wave equation migration uses the one-wave
wave equation operator as the migration operator (Kuehl and Sacchi,
2003; Wang et al., 2005; Clapp et al., 2005). Recently, the two-way
reverse time migration operator is utilized in the least-squares inver-
sion framework due to the fast development of modern computing ar-
chitecture (Chen et al., 2017b).

The least-squares reverse time migration (LSRTM) method can not
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only help reduce migration artifacts, improve the amplitude fidelity of
reflectivity images, but also can help better image the steeply dipping
reflectors than other LSM methods. The LSRTM has been applied to
migrate the incomplete data and simultaneous-source seismic data (Xue
et al., 2016c). A cross-correlation based objective function was proposed
in Zhang et al. (2015), instead of the normally used L2 norm amplitude
misfit objective function, to relax the amplitude constraints and thus can
be robustly applied to real data with a stable performance. A
source-independent LSRTM based on a convolution-based objective
function was proposed in Zhang et al. (2016c) to relieve the dependence
of traditional LSRTM on an accurate estimation of source wavelet. Feng
and Schuster (2017) extended the acoustic LSRTM to elastic LSRTM by
substituting the acoustic wave equation involved in the acoustic LSRTM
with the linearized elastic wave equation. Feng and Schuster (2017)
showed that the elastic LSRTM images have better resolution and
amplitude balancing, fewer artifacts, and less crosstalk compared with
the elastic RTM images. The images are also better focused and have
better reflector continuity for steeply dipping events compared to the
acoustic LSRTM images. However, Feng and Schuster (2017) also pointed
out that the elastic LSRTM set a higher demand on the migration velocity
analysis since more artifacts will exist when an inappropriate subsurface
macro velocity model is obtained.

The LSRTM cannot obtain successful performance without proper
regularization on the inverse problem (Xue et al., 2016c). Because of the
continuous property in the reflection angle dimension, angle-domain
common-image gathers (Sava and Fomel, 2003, 2006) can be straight-
forwardly utilized for applying some constraints that are based on the
spatial continuity (Xue et al., 2016c). A smoothing regularization can be
applied to suppress migration artifacts and have be demonstrated to be
effective in many applications (Kuehl and Sacchi, 2003; Prucha and
Biondi, 2002). The inconsistency between neighbor traces in the angle
gathers can be damped in order to compensate for the subsurface illu-
mination (Salomons et al., 2014). Other type of filtering methods are also
possible to remove the artifacts during LSRTM, such as the mode
decomposition based methods (Chen and Ma, 2014; Liu et al., 2016a,
2017; Chen, 2016, 2018b; Wu et al., 2018), sparse transform based
filtering methods (Liu et al., 2016b; c), statistics-based methods (Yang
et al., 2015; Bai and Wu, 2017; Huang et al., 2018b; Xie et al., 2018),
inversion-based filtering methods (Chen and Fomel, 2015; Jiao et al.,
2015; Chen and Jin, 2015), mathematical morphology based methods (Li
et al., 2016a; b; Huang et al., 2017a; c; 2018a), etc. The angle domain
constraint based on dip filtering was used in Stanton and Sacchi (2015)
for LSM of elastic data. A robust hybrid norm objective function was used
in Zhang et al. (2016c) for constraining the migration inversion in the
situations of strong random Gaussian noise and spiky noise. Structural
smoothness based regularization algorithms are used in Xue et al.
(2016c) with the preconditioned LSRTM framework or shaping regu-
larized based LSRTM framework. During iterative inversion, in order to
remove artifacts, a smoothing operator can be applied along the dip angle
direction (Xue et al., 2016c). However, it is challenging or even impos-
sible to choose an appropriate smoothing window length in order to
obtain the best compromise between noise removal and amplitude
preservation. A L1 regularization term is added to the objective function
in Wu et al. (2016a) for constraining the reflectivity model to be sparse in
some transformed domains, e.g., Fourier transform domain (Pratt et al.,
1998; Li et al., 2016c; Zhong et al., 2016; Zhou et al., 2017b), curvelet
domain (Zu et al., 2016; Liu et al., 2018b; Zhao et al., 2018), seislet
domain (Fomel and Liu, 2010; Gan et al., 2015, 2016b; 2016a; Chen and
Fomel, 2018), adaptively learned sparse dictionary domain (Rubinstein
et al., 2008; Chen, 2017; Chen et al., 2016b; Siahsar et al., 2017; Zhou
et al., 2017a), and Radon domain (Xue et al., 2016b; Chen, 2018a). Lin
and Huang (2015) proposed a modified total-variation (TV) regulariza-
tion based LSRTMmethod to enhance image quality and reduce artifacts.
This TV based method makes use of Tikhonov regularization and classic
TV regularization. The modified TV regularization objective function is
solved with two splited subproblems based on the preconditioned

conjugate-gradient and split Bregman iterative methods.
One of the most commonly used regularization methods for LSRTM is

based on smoothing. Smoothing, however, will inevitably cause ampli-
tude loss for edges. In this paper, a new regularization algorithm is
proposed based on the lowrank assumption (Xue et al., 2016a; Chen
et al., 2016c; Zhou et al., 2018) of reflectivity images along the structure
direction. The new regularization method can solve the edge damage
problem caused in the smoothing based regularization to some extent. A
rank reduction operator is applied along the structural direction of the
subsurface reflectivity image. The structural information is obtained
from an initial guess of the underground geological structures resulted
from a simple RTM based migration approach. We use plane-wave
destruction algorithm (Claerbout, 1985) to calculate the local slope
that is required by the structural rank reduction operator. The lowrank
constraint is superior than the smoothness constraint in that it can help
preverse amplitude variations of reflection events and better preserve the
discontinuities. Different synthetic examples with increasing complex-
ities are used to illustrate the effectiveness of the proposed algorithm.

The paper is organized as follows: we first introduce the general
iterative algorithm with a constraining operator to solve the LSRTM
related inverse problem, secondly we introduce in detail the rank
reduction operator which is the key in the lowrank LSRTM framework
and provide the pseudo-codes for easier implementation, thirdly we use
multiple examples with different levels of complexity to demonstrate the
superior performance of the proposed algorithm than the traditional al-
gorithm, and finally we draw some conclusions in the end of the paper.

2. Theory

2.1. Least-squares reverse time migration (LSRTM)

In a matrix-vector form, the forward modeling of reflection seismic
data using Born approximationmentioned above can be simply expressed
as

Lr ¼ d; (1)

where d is the traditionally recorded data, r denotes the reflectivity
model, and L denotes the Born modeling operator (Tarantola, 1984).
Conventional migration methods seeks to approximate the inverse of
operator L by its adjoint, and the resulted model br is the traditionally
migrated data:

br ¼ LTd; (2)

where LT denotes the adjoint of the forward operator. LSRTM seeks to
invert the L for obtaining r while using the two-way wave equation to
propagate seismic waves. Direct inversion of equation (2) is not possible
because of the extremely large forward matrix and the serious ill-
posedness of the inverse problem. Instead, we can use iterative method
to solve equation (2). The iterative updating formula can be

rnþ1 ¼ rn þ αnsn; (3)

where rn is the updated model after n iterations, αn and sn is the step size
and updating direction, respectively. αn can be obtained by performing a
line minimization along a given direction sn. The direction sn can be
chosen using the following relation between sn and sn�1:

sn ¼ fn þ βnsn�1; (4)

where fn is a given random direction and βn is chosen such that sn and
sn�1 are conjugate. If fn is chosen as the gradient direction such that
fn ¼ LT ðd� LrnÞ, the iterative approach of equations (3) and (4) is the so-
called conjugate gradient (CG) algorithm (Hestenes and Stiefel, 1952).
However, due to strong migrated artifacts due to sparse shot/receiver
samplings and narrow migration apertures, each updated rn may deviate
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