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A B S T R A C T

Geostatistical simulation methods have been used to quantify spatial variability of reservoir models since the 80s.
In the last two decades, state of the art simulation methods have changed from being based on covariance-based
2-point statistics to multiple-point statistics (MPS), that allow simulation of more realistic Earth-structures. In
addition, increasing amounts of geo-information (geophysical, geological, etc.) from multiple sources are being
collected. This pose the problem of integration of these different sources of information, such that decisions
related to reservoir models can be taken on an as informed base as possible. In principle, though difficult in
practice, this can be achieved using computationally expensive Monte Carlo methods. Here we investigate the use
of sequential simulation based MPS simulation methods conditional to uncertain (soft) data, as a computational
efficient alternative. First, it is demonstrated that current implementations of sequential simulation based on MPS
(e.g. SNESIM, ENESIM and Direct Sampling) do not account properly for uncertain conditional information, due
to a combination of using only co-located information, and a random simulation path. Then, we suggest two
approaches that better account for the available uncertain information. The first make use of a preferential
simulation path, where more informed model parameters are visited preferentially to less informed ones. The
second approach involves using non co-located uncertain information. For different types of available data, these
approaches are demonstrated to produce simulation results similar to those obtained by the general Monte Carlo
based approach. These methods allow MPS simulation to condition properly to uncertain (soft) data, and hence
provides a computationally attractive approach for integration of information about a reservoir model.

1. Introduction

During the last 30 years a number of probabilistic based methods and
algorithms have been developed in the geostatistical community, that
allow quantification and simulation of increasingly geologically complex
structural variability, see e.g. Deutsch and Journel (1992); Guardiano
and Srivastava (1993); Strebelle (2000); Remy et al. (2008); Mariethoz
et al. (2010); Straubhaar et al. (2011); Mariethoz and Kelly (2011);
Toftaker and Tjelmeland (2013); Tahmasebi et al. (2014); Mariethoz and
Caers (2014).

State of the art simulation methods have changed from being based
on 2-point statistics (covariance-based statistics) to multiple-point sta-
tistics (MPS), that allow simulation of more realistic Earth-structures.
MPS is especially important used as a base for flow modeling, as tradi-
tional 2-point statistics cannot adequately describe for example realistic
connectivity of geological structures, that may have significant effect on
flow properties and transport, see e.g. Zinn and Harvey (2003); Renard
et al. (2011). The information about the expected spatial variability of

the properties in a reservoir model can be conveniently provided in form
of a ‘training image’/’sample model’ when using MPS. Using such a
training image, several methods exist for simulation of multiple re-
alizations of reservoir models that are consistent with the spatial statistics
of the training image, e.g. Guardiano and Srivastava (1993); Strebelle
(2000); Mariethoz et al. (2010).

Additional information is often available from e.g. boreholes and
geophysical surveys (seismic, electromagnetic,…). Ideally, this infor-
mation should be combined with the geostatistical information in order
to obtain a stochastic reservoir model, or realizations of such a model that
are consistent with all available data/information.

Several methods have been proposed to deal with this problem of
integration of information. Probabilistic inverse problem theory allow
combining the available information by characterizing (or sampling
from) a posterior probability function that combines the information
form the geostatistical model that describes realistic earth models (in
form of a prior probability density), with information from data (in form
of a likelihood function) (Tarantola, 2005). Using Monte Carlo sampling
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the posterior of any posterior probability can be sampled, as long as the
prior model can be sampled, and the likelihood can be evaluated
(Mosegaard and Tarantola, 1995; Hansen et al., 2008, 2012; Irving and
Singha, 2010; Cordua et al., 2012; Hansen et al., 2013). While such a
Monte Carlo based approach can in principle deal with a large variety of
very complex systems, its practical use is hampered by its very high
computational demands.

Another approach is typically used in geostatistics, where available
(geophysical) data are converted into ‘soft data’ about each individual
model parameter. Soft data is a loosely defined term that typically refer to
uncertainty and inequality constraints about specific model parameters
(Journel, 1986). Most all geostatistical simulation algorithms can make
use of such ‘soft’ data (Remy et al., 2008; Mariethoz and Caers, 2014).
However, challenges related to using current state of the art MPS simu-
lation algorithms conditional to other geo-information has been consid-
ered widely in the literature with respect to ground water models He
et al. (2014); Koch et al. (2014); Jørgensen et al. (2015); Biver et al.
(2014); Høyer et al. (2015, 2017).

In the following the use of sequential simulation based MPS sampling
methods will be considered for probabilistic data integration with inde-
pendent uncertain conditional data, that may be available from other
sources.

First, using notation from probabilistic data integration, we formulate
precisely what is implicitly assumed about ‘soft data’ in most any MPS
algorithm.

Through analysis of 3 reference models, with varying density of
conditional/soft data, we demonstrate that a conventional implementa-
tion of sequential simulation based MPS simulation leads to simulations
that fail to generate realizations (reservoir models) consistent with the
available uncertain information (soft data).

Then, we suggest two novel approaches that allow considering the
information in a more correct way using direct sampling (DS, Mariethoz
et al., 2010), ENESIM (Guardiano and Srivastava, 1993), and SNESIM
(Strebelle, 2000). The first use as preferential simulation path, where
more informed model parameters are visited preferentially to less
informed ones. The second approach involves using more than only
co-located uncertain data, wihich is typically not done for most imple-
mentations of MPS. All examples are compared to those obtained by a
general Monte Carlo based approach.

2. Data integration using conditional geostatistical simulation -
theory

Consider that a model of the subsurface is parameterized into M
model parameters m ¼ ½m1;m2;m3;…;mM �. Say information is available
about the model parameters m from N independent sources I ¼
½I11; I2;…; IN � through the probability densities fI1 ðmÞ, fI2 ðmÞ, …, fIN ðmÞ.
Each probability distribution then represents a specific state of informa-
tion. Tarantola and Valette (1982) and Tarantola (2005) demonstrate
how these states of information can be combined through the conjunction
of the states of information through

fIðmÞ ¼ fI1 ðmÞ ^ fI2 ðmÞ ^… ^ fINðmÞ ¼ νμðmÞð1�NÞY

i

N

fIi ðmÞ; (1)

where ν represents a normalizing constant, μðmÞ represents the homo-
geneous probability distribution or the ‘state of total ignorance’ (Jaynes,
1968), and ^ is the operator for ‘conjunction’. Conjunction of informa-
tion, as expressed through (1), is derived from axioms similar to the
axioms of formal logic on conjunction of propositions, and the
Radon-Nikodym theorem from measure theory (Tarantola and Valette,
1982).

If a Cartesian coordinate system is used to parameterize m, then the
homogeneous probability density function becomes a constant μðmÞ ¼ k
(Mosegaard and Tarantola, 2002), which is the case we will consider
here. Then the problem of integrating information from independent

sources into to one probability density fIðmÞ is given by

fIðmÞ∝
YN

i

fIi ðmÞ: (2)

In the present context m reflects model parameters describing a
reservoir model, and I1, I2,. reflect different sources of information
available (e.g. from expert information, well log data, training image and
geophysical data).

Here, the special case is considered where all information available
refers directly to the model parameters. The reason for this is two-fold:
First, most (any) geostatistical simulation algorithms allow, in princi-
ple, to take such information into account as “soft” information (Mar-
iethoz and Caers, 2014). Second, working with reservoir models, a lot of
information about the model parameters of interest can be available in
form of direct measurements from well logs, inverted well logs param-
eters, or indirectly from geophysical data inverted into information about
the model parametersm. Barfod et al. (2016) present a recent example of
how to do this, by establishing an atlas (applicable in Denmark) that can
be used to translate resistivity values (found through inversion of
airborne EM data) into lithological/hydrological units with associated
uncertainty.

Three types of information are available in a typical MPS based
geostatistical data integration problem:

ITI Information from a training image. This can be information from
outcrops, previous analysis, well log analysis, expert information
which is quantified through a geostatistical model describing (spatial)
co-dependence between model parameters.
Ihard Hard data. Direct observation of one or more model parameters,
without any associated uncertainty.
Isoft Soft data. Direct observation of one or more model parameters,
with an associated uncertainty.

In case the information has been obtained independently, such a
geostatistical problem is equivalent to the problem of inferring infor-
mation about fIðmÞ given by

fIðmÞ∝fITI ðmÞfIhard ðmÞfIsoft ðmÞ: (3)

Høyer et al. (2017) present one example of combining these three
types of information into one stochastic model.

In principle there is no need to distinguish between hard and soft
data, as both are simply data that provide information about the model
parameters. So, a general geostatistical data integration problem can be
formulated as

fIðmÞ∝fITI ðmÞfIdata ðmÞ: (4)

Spatially independent ’data’. For many geostatistical data integration
problems, the information about each model parameter is assumed
spatially independent, such that

fIdata ðmÞ ¼
YM

i¼1

fIdata ðmiÞ: (5)

From hereon, the term ‘soft information’ about the model parameters
is defined through equation (5). The general data integration problem of
equation (4) is then reduced to

fIðmÞ∝fTIðmÞfdataðmÞ ¼ fTIðmÞ
YM

i¼1

fdataðmiÞ: (6)

Equation (6) represent the probability distribution that most
sequential simulation based MPS methods suggest to sample from, by
combining information from a geostatistical model with ‘hard’ (certain)
and ‘soft’ (uncertain) data. From hereon different methods, existing and
new, will be discussed that allow sampling from equation (6).
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