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A B S T R A C T

We propose to apply a novel incoherent dictionary learning (IDL) algorithm for regularizing the least-squares
inversion in seismic imaging. The IDL is proposed to overcome the drawback of traditional dictionary learning
algorithm in losing partial texture information. Firstly, the noisy image is divided into overlapped image patches,
and some random patches are extracted for dictionary learning. Then, we apply the IDL technology to minimize
the coherency between atoms during dictionary learning. Finally, the sparse representation problem is solved by a
sparse coding algorithm, and image is restored by those sparse coefficients. By reducing the correlation among
atoms, it is possible to preserve most of the small-scale features in the image while removing much of the long-
wavelength noise. The application of the IDL method to regularization of seismic images from least-squares
reverse time migration shows successful performance.

1. Introduction

Seismic migration techniques play an important role in exploration
for hydrocarbons (Lindstrom et al., 2016; Zhang et al., 2016b, 2016c;
Chang et al., 2016; Ren and Tian, 2016; Wu et al., 2016b; Liu et al.,
2017a; Fabien-Ouellet et al., 2017; Rastogi et al., 2017; Li et al., 2017;
Chen et al., 2017a, 2017b; Bucha, 2017; Huang et al., 2017a; Shabani
and Vilc�aez, 2018; Xu et al., 2018; Wang et al., 2018). However, con-
ventional migration operator is the adjoint of the forward modelling
operator, rather than the exact inverse of the forward modelling oper-
ator. This approximation suffers from migration artifacts, which are
caused by bandwidth, under-sampled acquisition geometry, limited
recording aperture, etc. These artifacts can be mitigated by taking the
inverse Hessian matrix into account. However, directly calculating the
explicit Hessian matrix requires huge memory storages which prevents
the usage in practice. The indirect way to account for the effects of the
inverse Hessian matrix is by using a migration followed by applying an
approximation of the inverse Hessian matrix or through an
inversion-based iterative algorithm (Jiao et al., 2015; Zu et al., 2016a;
Lines et al., 2016; Xie et al., 2018), which is also known as least-squares
migration (LSM) (Nemeth et al., 1999; Xue et al., 2016c). Using the Born
approximation, LSM is equivalent to a linearized inversion, where the
reflectivity model is updated at every iteration.

In LSRTM, we assume that the background velocity is smoothly

varying, e.g., from NMO-based velocity analysis (Ebrahimi et al., 2017),
and use Born modelling to predict the primary reflected waves. However,
when the velocity field has sharp contrasts, such as the velocity at the
boundary of salt, Born approximation, which assumes that the pertur-
bation of velocity model is small, is violated. The forward- and
back-propagated wavefields travelling through the background velocity
model will generate perceptible backscattered energy. In this case,
cross-correlation of these two wavefields will generate some noise in the
gradient. This issue in conventional RTM is well addressed (Guitton et al.,
2006). However, the standard gradient formula used in LSRTM has some
differences with the cross-correlation imaging condition (Chattopadhyay
and McMechan, 2008) normally used in conventional RTM. Although
some methods, such as the high-pass spatial filter method (Plessix and
Mulder, 2004), Poynting vectors method (Yoon and Marfurt, 2006) and
wavefield decomposition method (Liu et al., 2011), can be directly used
in LSRTM, other methods, such as Laplacian operator (Youn and Zhou,
2001), inverse scattering imaging condition (Stolk et al., 2009), and
energy imaging condition (Rocha et al., 2016), still need further exten-
sion to the LSRTM or need to construct the connection with the standard
gradient formula. Even using the inversion-based LSM method, seismic
images are still usually corrupted by various types of noise during the
collection and transmission processes (Rashed and Rashed, 2017). The
noise greatly reduces the reliability and effectiveness of image process-
ing, such as feature extraction, target detection and recognition. Hence,
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the noise must be eliminated to improve the quality of image. In this
context, noise elimination has been a major research topic in seismic
imaging and tomography (Chen et al., 2017g).

Currently, denoising algorithms can be broadly classified into three
categories: the denoising method based on spatial-domain filtering (Chen
and Ma, 2014; Huang et al., 2016, 2017e, 2017f, 2017c; Zhou et al.,
2017b), the denoising method based on transform-domain filtering
(Kong and Peng, 2015; Gan et al., 2015; Zhou et al., 2018) and the
denoising method based on learning (Chen, 2017; Siahsar et al., 2017a,
2017b, 2017c; Zhou et al., 2017a). Examples of those methods based on
spatial-domain filtering include the Gaussian filtering, empirical mode
decomposition (EMD) (Gan et al., 2016a; Chen et al., 2017d), ensemble
empirical mode decomposition (EEMD) (Chen et al., 2017f), improved
complete ensemble empirical mode decomposition (ICEEMD) (Chen
et al., 2016a, 2017c), variational mode decomposition (VMD) (Liu et al.,
2016c, 2017b, 2017c, 2018), bilateral filtering, guided filtering (Mor-
tazavi et al., 2017), median filtering (Gan et al., 2016d; Chen et al.,
2017e; Huang et al., 2018), morphological filtering (Li et al., 2016a, b),
principal component analysis (PCA) filtering (Ikelle, 2016; Naghadeh
and Morley, 2016; Xie et al., 2017), and the non-local means filtering
methods (Buades et al., 2005; Mairal et al., 2009; Yang et al., 2015). The
basic idea of these algorithms is to eliminate the noise using local or
non-local self-similarity of the image. The first category of algorithms is
computationally efficient, but the denoised image is usually too smooth.
Examples of those methods based on transform-domain filtering include
the Fourier transform (Zhong et al., 2016; Shen et al., 2016; Li et al.,
2016c), Wavelet transform and BM3D methods (Dabov et al., 2007;
Burger et al., 2012), Curvelet transform (Liu et al., 2016e), Shearlet
transform (Liu et al., 2016a; Kong et al., 2016), Synchrosqueezing
Transform (Liu et al., 2016d, 2016g), Radon transform (Xue et al., 2016b,
2017; Sun and Wang, 2016), Seislet transform (Gan et al., 2016b, 2016c;
Liu et al., 2016f; Wu et al., 2016a), and EMD-seislet transform (Chen and
Fomel, 2018). The basic idea of these methods is to eliminate the noise
via thresholding and it also exploits the observation that the transforms
lead to different energy distributions of noise coefficients and image
coefficients. In the case of BM3D algorithm, block matching is performed
on the image to convert the 2-D image blocks with similar structures into
3D data through 3-D transform; then, it is subjected to Wiener filtering.
Rank-reduction basedmethods can also be implemented in a transformed
domain (Zhang et al., 2016a, 2017; Wang et al., 2017), e.g., the
randomized-order multichannel singular spectrum analysis (Huang et al.,
2017d), damped multichannel singular spectrum analysis (Chen et al.,
2016b, 2016c), the double least squares projections method (Huang
et al., 2017b), empirical low-rank approximation method (Chen et al.,
2017h). The learning-based denoising algorithm includes K-SVD (Elad
and Aharon, 2006; Aharon et al., 2006; Romano and Elad, 2013), LSSC
(Mairal et al., 2009) and CSR (Dong et al., 2013; Romano et al., 2014; Li
et al., 2011; Lu et al., 2013). The basic idea of this type of algorithm is to
eliminate the noise using local sparsity of the image. In K-SVD, the
mutually overlapping small image blocks are learned to yield the
self-adaptive redundant dictionary, which is then used to obtain the
sparse representation of image blocks, thereby achieving noise elimina-
tion. Chen (2017) addressed the computational efficiency problem in
K-SVD, and proposed a fast dictionary learning approach based on the
sequential generalized K-means (SGK) algorithm for denoising multidi-
mensional seismic data. The SGK algorithm updates each dictionary atom
by taking an arithmetic average of several training signals instead of
calculating an SVD as used in K-SVD algorithm.More advanced denoising
methods are being developed to best preserve the useful signals while
maintaining the noise removal ability, e.g., the signal-and-noise orthog-
onalization method (Chen and Fomel, 2015), waveform-shaping method
(Chen and Jin, 2015), and time-frequency-peak filtering method (Zhang
et al., 2015).

It has been reported that if the non-correlation degree between dic-
tionary atoms is increased, the redundant dictionary obtained via

learning can fully describe the information of image texture (Lin et al.,
2012; Abolghasemi et al., 2015; Liu et al., 2016b). Motivated by this
observation and in order to address problems of existing algorithms, we
propose a novel image denoising algorithm based on non-correlated
dictionary learning. The basic idea of our proposed algorithm is to
reduce correlation between dictionary atoms using the non-correlated
dictionary learning technology and improve the ability of redundant
dictionary to represent information of image texture. By reducing the
correlation among atoms, it is possible to preserve most of the small-scale
features in the image while removingmuch of the long-wavelength noise.
In this way, we can eliminate the noise while maintaining image details.
First, the input noise-corrupted image is divided into mutually over-
lapping image blocks, and some image blocks are chosen randomly as the
sample. Next, a non-correlated dictionary learning algorithm is proposed
to obtain a redundant dictionary with slightly correlated atoms. We
provide a brief introduction of the regularization least-squares reverse
time migration (LSRTM) and introduce in detail the incoherent dictio-
nary learning algorithm and its application to LSRTM. We apply the
incoherent dictionary learning algorithm to reduce migration crosstalk
caused from the simultaneous-source acquisition (Berkhout, 2008; Chen
et al., 2014; Qu et al., 2014, 2015, 2016; Xue et al., 2016a; Zu et al.,
2016b, 2017c; Zhou, 2017; Chen, 2015). In this paper, we use two nu-
merical examples to show the successful performance of the presented
algorithm.

2. Method

2.1. Incoherent dictionary learning

Consider a set of samples Y ¼ ½y1;y2;⋯;yK � 2 Rn�K . The aim of dic-
tionary learning is to obtain redundant dictionary D ¼ ½d1;d2;⋯;dm� 2
Rn�m via learning, so that each sample ykðk ¼ 1;⋯;KÞ can be represented
with a sparse vector xkðk ¼ 1;⋯;KÞ. The dictionary learning problem can
be formulated as

min
D;x

kY� DXk2F ;
s:t:kdik2 ¼ 1; kxkk0 � T0;8i; k:

(1)

where X ¼ ðx1; x2;⋯; xKÞ 2 Rm�K is the coefficient matrix, T0 is the level
of sparsity. ½⋅�0 denotes the L0-norm of an input vector. The problem in
equation (1) can be solved using the K-SVD (Aharon et al., 2006) or
online dictionary learning (Lu et al., 2013) algorithms.

Next, we will describe the incoherent dictionary learning (or non-
correlated dictionary learning) algorithm (Lin et al., 2012; Abolgha-
semi et al., 2015; Liu et al., 2016b). The degree of correlation between
atoms in the redundant dictionary is an import metric of the dictionary's
representation ability. The lower the degree of correlation between
atoms, the greater the dictionary's representation ability. Existing models
for dictionary learning cannot ensure slight correlation between atoms in
the obtained redundant dictionary, and this affects performance of the
redundant dictionary. In this paper, we intend to introduce the
non-correlation constraint to the dictionary leanring model to guarantee
slight correlation between dictionary atoms.

A non-correlated dictionary learning model will be constructed in this
sub-section. The degree of correlation between dictionary atoms is
defined as (Lin et al., 2012; Abolghasemi et al., 2015):

R
�
di;dj

� ¼
�� < di;dj >

��
kdik2

��dj
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¼ dT
i dj

kdik2
��dj

��
2

: (2)

From the definition above, it can be seen that Rðdi;djÞ 2 ½0; 1�. If di

and dj are orthogonal. Rðdi;djÞ ¼ 0. If di ¼ ρdj (ρ is a non-zero constant),
Rðdi;djÞ ¼ 1. Based on the definition in equation (2), the correlation
degree of the dictionary D can be defined as (Lin et al., 2012; Abolgha-
semi et al., 2015)

J. Wu, M. Bai Computers and Geosciences 114 (2018) 11–21

12



Download English Version:

https://daneshyari.com/en/article/6922150

Download Persian Version:

https://daneshyari.com/article/6922150

Daneshyari.com

https://daneshyari.com/en/article/6922150
https://daneshyari.com/article/6922150
https://daneshyari.com

