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A B S T R A C T

Seismic traveltime tomography is an optimization problem that requires large computational efforts. Therefore,
linearized techniques are commonly used for their low computational cost. These local optimization methods are
likely to get trapped in a local minimum as they critically depend on the initial model. On the other hand, global
optimization methods based on MCMC are insensitive to the initial model but turn out to be computationally
expensive. Particle Swarm Optimization (PSO) is a rather new global optimization approach with few tuning
parameters that has shown excellent convergence rates and is straightforwardly parallelizable, allowing a good
distribution of the workload. However, while it can traverse several local minima of the evaluated misfit function,
classical implementation of PSO can get trapped in local minima at later iterations as particles inertia dim. We
propose a Competitive PSO (CPSO) to help particles to escape from local minima with a simple implementation
that improves swarm's diversity. The model space can be sampled by running the optimizer multiple times and by
keeping all the models explored by the swarms in the different runs. A traveltime tomography algorithm based on
CPSO is successfully applied on a real 3D data set in the context of induced seismicity.

1. Introduction

Tomographic inversion schemes aiming at reconstructing the sub-
surface structures from seismic traveltime data are widely used (e.g.
Rawlinson et al. (2010)). The obtained wave propagation velocity dis-
tribution is usually a starting point for further analysis at various scales,
from near surface to global scale. For a reliable and quantitative inter-
pretation of the tomographic solution, an accurate velocity model with its
associated uncertainties are required.

In spite of the fact that the inversion for the velocities is a totally non-
linear problem, very often it is solved with iterative linearized ap-
proaches that minimize a misfit function. The misfit function usually
measures the difference between observed and computed traveltimes as a
function of the velocity model parameters. The linearization makes the
implicit assumption of a unique solution which is chosen thanks to a
regularization procedure that reduces the solution non-uniqueness
(Menke, 2012). This is generally achieved by imposing the solution to
be somehow similar or close to an initial a priori model.

The data-model (traveltimes-velocities) relationship can be highly
non-linear and requires the use of global optimization methods. In

addition, the linearized approaches are not really adapted to provide
reliable uncertainties. From a theoretical point of view, to address these
two issues, methods based on Markov Chain Monte Carlo (MCMC) that
sample the velocity model parameter space are required, such as
reversible-jump MCMC (Green, 1995; Bodin and Sambridge, 2009),
Parallel Tempering (Sambridge, 2014), or Interactive MCMC (Bottero
et al., 2016). These global optimization methods can be applied on
non-smooth and non-convex functions as they are derivative-free and
produce results independent of the initial model. However, they cannot
be parallelized and turn out to be prohibitive in terms of computation
time.

Another class of global optimization methods has shown growing
interest in the last decades. These methods, known as evolutionary al-
gorithms (EA), are inspired by the natural evolution of species and have
demonstrated very good convergence rates. While MCMC methods
sample the model parameter space by perturbing iteratively a single
model, EA work with a population of simultaneous models that evolve
toward better models through stochastic processes. This simultaneous
evaluation of independent models implies that it is straightforward to
parallelize and thus can significantly reduce the computation time. EA
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include Genetic Algorithm (Sambridge and Drijkoningen, 1992; Whitley,
1994), Differential Evolution (Storn and Price, 1997; Barros et al., 2015),
and Covariance Matrix Adaptation Evolution Strategy (Hansen and
Ostermeier, 1996; Grayver and Kuvshinov, 2016).

In this work, we propose to overcome the non-linearity using a rather
new EA known as Particle Swarm Optimization (PSO) for its ease of
implementation and the low number of tuning parameters required. PSO
has been introduced to study birds flocking and fish schooling (Kennedy
and Eberhart, 1995). While it has been extensively used in other engi-
neering domains (e.g. biomedical, signal processing …) for years, PSO
has been fairly ignored by the geophysical community until recently. In
seismics, PSO has been applied in history matching for reservoir char-
acterization (Mohamed et al., 2010; Fern�andez Martínez et al., 2012),
traveltime tomography (Tronicke et al., 2012; Rumpf and Tronicke,
2015; Poormirzaee et al., 2015), and surface waves inversion (Wilken
and Rabbel, 2012; Poormirzaee, 2016). Yet, PSO may suffer from pre-
mature convergence, in particular for functions with complex shapes.
Therefore, we propose and describe a simple modification of PSO to
tackle premature convergence and improve its robustness. Although PSO
is mainly used as a global optimization method, we show that our
implementation not only demonstrates better convergence rates, but also
samples correctly the model parameter space, allowing more reliable
uncertainty quantification. We apply the method on a real 3D micro-
seismic example and sample the model parameter space which allows us
to derive reliable velocity model uncertainties.

2. Theory and method

Geophysical inverse problems are underdetermined optimization
problems that can be solved by either linear or non-linear techniques
(Tarantola and Valette, 1982). Let us define the discrete data vector
d ¼ ½d1;…; dn�>, where n is the number of data points. Calculated data
are generated by applying the forward modeling operator g, most often
non-linear, on the model vector m ¼ ½m1;…;mp�>, with p the number of
parameters defining the model

dcalc ¼ gðmÞ: (1)

Inverse problems consist in determining the model vector m that
minimizes the misfit between the observed data and the calculated data

eðmÞ ¼ dobs � dcalc ¼ dobs � gðmÞ: (2)

Given an error vector e (Equation (2)), the misfit function is usually
defined with an ℓp -norm. In geophysical inverse problems, even though
other norms can be found in the literature, the ℓ2 -norm is often used

jjeðmÞjj2 ¼
h�
dobs � gðmÞ�>�dobs � gðmÞ�i1

2
: (3)

The non-linearity can be addressed by global optimization methods
that explore the model parameter space. In this section, we first describe
the PSO algorithm before introducing a more robust implementation
based on PSO that tackles its shortcomings.

2.1. Particle Swarm Optimization

For consistency in the notation, the so-called position vector usually
denoted by x in the literature will be denoted by m. Consequently, we
will only speak in terms of models instead of position vector.

In PSO, the first step is to generate a swarm composed of several
models in the model parameter space. The initial models can either be
defined a priori or generated given a random distribution (usually uni-
form). Each model is represented by a particle that interacts with its
neighborhood to find the global minimum of the misfit function. Ken-
nedy (1999) has studied several neighborhood topologies and concluded
that the global best topology (all the particles are connected to each

other) performed better than the others. Thus, we here only consider the
global best topology where the neighborhood of each particle is the
entire swarm.

At iteration k, a particle i is defined by a model vector mk
i and a ve-

locity vector vki and is adjusted according to its own personal best model
and the global best model of the whole swarm. The velocity vector
controls how a particle moves in the model parameter space and is
initialized to zero (Engelbrecht, 2012). The velocity and the position of
each particle are updated following

vk
i ¼ ωvk�1

i þ ϕpr
k
p

�
mp;i �mk�1

i

�þ ϕgr
k
g

�
mg �mk�1

i

�
(4)

mk
i ¼ mk�1

i þ vk
i (5)

where mp;i and mg are respectively the personal best model of particle i
and the global best model of the swarm, rkp and rkg are uniform random
numbers vectors drawn at iteration k, ω is an inertia weight, ϕp and ϕg are
two acceleration parameters that respectively control the cognition and
social interactions of the particles.

The inertia weight ω has been introduced by Shi and Eberhart (1998)
to help the particles to dynamically adjust their velocities and refine the
search near a local minimum. Another formulation using a constriction
coefficient based on Clerc (1999) to insure the convergence of the al-
gorithm can be found in the literature. However, Eberhart and Shi (2000)
showed that the inertia and constriction approaches are equivalent since
the parameters are connected.

Empirical studies have concluded that the performance of PSO is
sensitive to its control parameters, namely the swarm size s, the
maximum number of iterations kmax, ω, ϕp and ϕg . Yet, these studies have
provided some insights on the initialization of some parameters (Van Den
Bergh and Engelbrecht, 2006). Eberhart and Shi (2000) empirically
found that ω ¼ 0:7298 and ϕp ¼ ϕg ¼ 1:49618 are good parameter
choices that lead to convergent behaviour. Although these parameters
have shown good results in previous studies, be aware that they can also
be tuned according to the optimization problem. The sensitivity of PSO to
these parameters is analyzed in Section 3.1. Unless explicitly stated, we
will set ω ¼ 0:7298 and ϕp ¼ ϕg ¼ 1:49618.

The swarm size and the maximum number of iterations have to be
carefully chosen dependently of the problem and the computer resources
available. These two parameters are related since a smaller swarm will
require more iterations to converge, while a bigger swarm will converge
more rapidly. In real optimization problems, the computation cost is
mainly dominated by the forward modeling. Therefore, the optimization
is usually stopped when a predefined number of forward modelings (i.e.
computation of misfit functions) is performed. The desired number of
forward modelings is controlled by both the swarm size and the
maximum number of iterations. Trelea (2003) has studied the effect of
the swarm size on several benchmark test functions in 30 dimensions. He
found that a medium number of particles (� 30 particles) gives the best
results in terms of number of misfit function evaluations. Too few par-
ticles (� 15 particles) gives a very low success rate while too many
particles (� 60 particles) results in much more misfit function evalua-
tions than needed although it increases the success rate. Piccand et al.
(2008) came to the same conclusion with problems of higher dimensions
(up to 500).

In the original PSO, the swarm's global best position is updated in a
synchronous fashion. In other words, mg is updated at the end of an
iteration once the misfit functions of the entire swarm have been eval-
uated. Carlisle and Dozier (2001) has shown that PSO yields better per-
formance when the particles are evaluated asynchronously (i.e. mg is
evaluated after each individual misfit evaluation). Synchronous PSO is
intrinsically parallelizable and performs well if the individual misfit
function evaluations require the same amount of time, while a parallel
asynchronous PSO is not straightforward but could reduce wasted CPU
cycles (Schutte et al., 2004; Koh et al., 2006). This work only deals with
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