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A B S T R A C T

Simulated annealing (SA) is a popular geostatistical simulation method as it provides great flexibility. In this
paper possible problems of conditioning its realizations are discussed. A statistical test to recognize whether the
observations are well embedded in their simulated neighborhood or not is developed. A new simulated annealing
method, phase annealing (PA), is presented which makes it possible to avoid poor embedding of observations. PA
is based on the Fourier representation of the spatial field. Instead of the individual pixel values, phases corre-
sponding to different Fourier components are modified (i.e. shifted) in order to match prescribed statistics. The
method treats neighborhoods together and thus avoids singularities at observation locations. It is faster than SA
and can be used for the simulation of high resolution fields. Examples demonstrate the applicability of the
method.

1. Introduction

Observed spatial fields are often the results of complicated physical,
chemical and/or biological processes which are frequently not known in
full detail. Results of these processes such as precipitation accumulations
or groundwater levels are usually observed at a few selected locations
only. Different geostatistical interpolation methods can be used to esti-
mate values at unsampled locations. Interpolation, however, reduces the
variance which leads to unrealistic, smooth fields. Using these smooth
fields for subsequent non-linear modeling leads to serious biases. Instead
geostatistical simulations are widely used to generate realistic fields.
These reproduce measurement values, but also reflect the observed
spatial variability, which makes them more appropriate for subsequent
non-linear modeling and useful for uncertainty and risk assessment.

Many different geostatistical methods for the simulation in 2D and 3D
are available, includingmethods like sequential Gaussian simulations, LU
decomposition based methods and Turning bands simulations. A
description and code for these methods can be found in Deutsch and
Journel (1998) or Lantuejoul (2002). These methods concentrate on
reproducing the observed data and the spatial variability expressed with
the variogram.

An interesting technique amongst the existing methods is simulated
annealing for spatial random fields (note that this specific type of simu-
lated annealing will be abbreviated SA in the following) (Deutsch, 1992).
SA is a very flexible approach as it can generate fields with desired

properties without the explicit specification of a theoretical model. One
of the limitations of SA is the high computational demand, specifically for
conditional simulation of large fields. Some approaches exist to reduce
the computational run time of SA. For example in Peredo and Ortiz
(2011), the authors parallelize the algorithm. Another less known
problem with SA is the often poor conditioning. Due to the nature of the
algorithm observations are often not well embedded, i.e., they do not
always fit into their simulated neighborhood causing ”singularities”.

Other interesting simulation methods were developed in the field of
time series analysis. In their seminal paper, Theiler et al. (1992)
described the methodology of phase randomization for investigating
non-linear properties of time series. The method can easily be extended
to higher dimensions (Shinozuka and Deodatis, 1991, 1996) and is
frequently used, for example for the simulation of textures (Galerne et al.,
2011). The link between texture synthesis and multipoint geostatistics
was studied in Mariethoz and Lefebvre (2014).

The purpose of this paper is to develop a method to detect problems
with conditioning and to present a new simulation methodology which
combines the well-known method of phase randomization with simu-
lated annealing to obtain conditional realizations of fields with flexible
spatial properties.

After the general introduction, a brief introduction to SA is given.
Problems of singularities occurring in conditional fields generated with
SA are discussed. A statistical method which can be used to detect sin-
gularities at observation locations is presented. The third section
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describes the phase randomization methodology and its modification,
phase annealing to generate conditional random fields with arbitrary
marginal distributions. Section four presents applications of the meth-
odology. Different examples are given which demonstrate the flexibility
of the algorithm. Fields with properties described with the help of spatial
copulas are also presented. In section five, a refinement of the algorithm
enabling very high dimensional simulations is described. The paper ends
with discussions and conclusions.

2. Simulated annealing

Kirkpatrick et al. (1983) first introduced simulated annealing as a
probabilistic approach with the goal of finding the global minimum of a
given objective function. Simulated annealing represents an extension to
the well-known Metropolis algorithm (Metropolis et al., 1953) which has
been developed to simulate molecule behavior.

The first spatial application of simulated annealing can be found in
Geman and Geman (1984), where the authors applied the approach to
the restoration of degraded digital images. Deutsch (1992); Deutsch and
Journel (1998) then adopted simulated annealing to the simulation of
spatial random fields (abbreviated SA in the following) with the objective
of reproducing observed spatial properties. In essence, the algorithm
works by perturbing one or more nodes at a time, starting with an initial
model (usually a random spatial distribution of values with the obser-
vations being fixed at their corresponding locations). After every
perturbation, the mismatch between the current simulated statistics and
the observed (target) statistics is quantified according to a predefined
objective function. A perturbation is kept if it reduces the mismatch; it is
rejected with a certain probability if it increases the mismatch. The
acceptance probability of unfavorable perturbations is given by the
predefined annealing schedule. The annealing schedule is defined by an
initial temperature and a corresponding procedure to lower that tem-
perature as the simulation progresses. A detailed description of the SA
algorithm can be found in Deutsch (1992). Further theoretical back-
ground of the algorithm can be found in Hegstad et al. (1994) where its
relationship to the Hastings algorithm is also discussed.

3. Singularities

Conditional simulations are used to restrict the possible realizations
by generating fields which honor observed values at the observation

locations. Observed values should be embedded into their neighborhood
so that they are indistinguishable from points of the simulated field. If
observations are visually identifiable in a simulated realization, then
conditioning was not appropriate. In general, values differing signifi-
cantly from their neighbors will subsequently be called singularities. SA
unfortunately can produce realizations with singularities at observation
locations. The reason for this is that objective functions used for SA are
defined over the whole field, and when few observations are available
relative to the dimensions of the field, the objective functions may thus
not penalize local unusual behavior at observation locations.

The following example illustrates the problem. Consider two inde-
pendently generated realizations, both have the same variogram and an
exponential marginal distribution. The fields under consideration are
defined on a regular 128� 128 grid. N ¼ 95 random locations are
selected and considered as observation points. The values of the first field
at those observation points are replaced by the values of the second field
at those N observation points. Then the variogram of the field with the
changed values is calculated again. Fig. 1 shows parts of the original and
the modified field. Both fields exhibit pixels which deviate from their
neighbors, but the modified field shows a few more deviations. Looking

Fig. 1. Simulated field (left) and simulated field with exchanged values at observation points (right).

Fig. 2. Variogram of the simulated data (solid line) and of the field modified at N ¼ 95
locations.
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