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A B S T R A C T

Sequential Gaussian Simulation (SGS) is a stochastic simulation technique commonly employed for generating
realizations of Gaussian random fields. Arguably, the main limitation of this technique is the high computational
cost associated with determining the kriging weights. This problem is compounded by the fact that often many
realizations are required to allow for an adequate uncertainty assessment. A seemingly simple way to address this
problem is to keep the same simulation path for all realizations. This results in identical neighbourhood con-
figurations and hence the kriging weights only need to be determined once and can then be re-used in all sub-
sequent realizations. This approach is generally not recommended because it is expected to result in correlation
between the realizations. Here, we challenge this common preconception and make the case for the use of a
constant path approach in SGS by systematically evaluating the associated benefits and limitations. We present a
detailed implementation, particularly regarding parallelization and memory requirements. Extensive numerical
tests demonstrate that using a constant path allows for substantial computational gains with very limited loss of
simulation accuracy. This is especially the case for a constant multi-grid path. The computational savings can be
used to increase the neighbourhood size, thus allowing for a better reproduction of the spatial statistics. The
outcome of this study is a recommendation for an optimal implementation of SGS that maximizes accurate
reproduction of the covariance structure as well as computational efficiency.

1. Introduction

Sequential Gaussian Simulation (SGS) is a popular method for gener-
ating stochastic values on a grid under the constraints of a statisticalmodel
and, possibly, some initially knownvalues, herein referred to as hard data.
SGS has been extensively used by practitioners because of its intuitive
theoretical basis, its simple numerical implementation, and its high flex-
ibility (e.g. G�omez-Hern�andez and Journel, 1993; Pebesma and Wessel-
ing, 1998). Arguably, themajor drawback of SGS is its computational cost.
The exact estimation of kriging relies on taking into account all condi-
tioning nodes, which results in large linear systems that need to be solved.
For a squarematrix of size n, common linear solvers have a computational
complexity of Oðn3Þ (Trefethen and Bau, 1997), which means that the
computational effort is proportional to the cube of the matrix dimension.
Therefore, the sequential simulation of a grid with N nodes represents an
OðN4Þ-type problem (Dimitrakopoulos and Luo, 2004).

Various attempts have been undertaken to reduce the associated
computational cost. Themost widespread approach is the so-called limited

or moving neighbourhood, that is, the approximation of the kriging esti-
mate by using only a limited number of conditioning points referred to as
the neighbours (e.g. Isaaks and Srivastava, 1989; Deutsch and Journel,
1992;Goovaerts, 1997). This reduces the computational complexity of SGS
to Oðk3NÞ, where k denotes the number of neighbours. This approach is
rooted in the observation that neighbours which are located far away from
the simulated point receive small or even vanishing weights. This effect
originates from the rapid decrease of correlation with distance inherent to
most covariance functions and is enhanced by the presence of intermediate
neighbours screening the influence of those behind (e.g. Chil�es and Del-
finer, 1999). However, the omission of neighbours has shown to bias the
simulation covariancematrix (Emery and Pel�aez, 2011; Nussbaumer et al.,
2017), which in turn results in artifacts in the realizations (e.g. Meyer,
2004). Recent works on reducing such detrimental effects, while limiting
the neighbourhood size and optimizing the computational efficiency,
include those of Gribov and Krivoruchko (2004), Rivoirard and Romary
(2011) and Dimitrakopoulos and Luo (2004).

An alternative to reducing the size of the kriging covariance matrix is
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to approximate it. Barry and Kelley Pace (1997) formulate
covariance-based kriging, which leads to the inversion of sparse sym-
metric matrices. Sparse matrix solvers considerably improve the
computational performance, but this approach is limited to simulations
based on covariance functions with a finite range. Furrer et al. (2006) and
Memarsadeghi and Mount (2007) further increase the sparsity of the
matrix by tapering the covariance for large lag-distances. Related ap-
proaches comprise the approximate iterative method (Billings et al.,
2002), the low rank approximation (Kammann and Wand, 2003), the
Sherman-Morrison-Woodbury formula (Sakata et al., 2004), and fast
summationmethods (Memarsadeghi et al., 2008; Srinivasan et al., 2008).

Another approach is to only consider simulations whose covariance
function is from a limited set of easily solvable covariance models. Omre
et al. (1993) propose the screening sequential simulation, which provides
exact simulations for covariancemodelswith theMarkovproperty, suchas,
for example, the exponential model in 1D. Hartman and H€ossjer (2008)
approximate the simulated Gaussian field with a set of Gaussian Markov
randomfields (Rue andTjelmeland, 2002),which can be simulated exactly
and efficiently. Finally, Cressie and Johannesson (2008) consider covari-
ancemodels composed of afixed number of basic non-stationary functions.
This technique is also referred to as fixed-rank kriging. A related approach
is the predictive processes method (e.g. Banerjee et al., 2008).

A more general technique to cope with the high computation costs of
SGS is parallelization, which reduces the computation time by splitting
the work among several cores (Vargas et al., 2007; Mariethoz, 2010;
Nunes and Almeida, 2010; Rasera et al., 2015). It is important to note
that parallelization does not reduce the computational burden, but
merely spreads it over several cores, and hence is just a useful comple-
ment to the other techniques.

The approach explored in this study aims at decreasing the overall
computational cost by taking advantage of the large number of realizations
typically needed in geostatistical applications. Indeed, an uncertainty
assessment can only be performed with an ensemble of realizations span-
ning the variability of outcomes. When the simulation path, that is, the
order in which the nodes are simulated, is kept identical among multiple
realizations, the neighbourhood configurations of each simulated node are
also identical throughout these realizations. Because the kriging weights
are computed solely with the relative distances between nodes, a constant
neighbourhood configuration produces the same kriging weights. There-
fore, theseweights only need to be computed once and then can be re-used
for all realizations. This reduces the computational effort of eachadditional
realization to simple matrix multiplications.

While some works outline the advantages of using a constant path
(e.g. Verly, 1993), the overwhelming majority still discourages its use,
because of the risk to draw correlated realizations, and rather advocate a
randomized path to explore the solution space more homogenously (e.g.
Deutsch and Journel, 1992; Goovaerts, 1997). Conversely, C�aceres et al.
(2010); Boisvert and Deutsch (2011) reported that using a constant path
in SGS does not result in a significant reduction of the space of uncer-
tainty for neither first- nor second- order statistics, while allowing for
compelling reductions in computational cost. However, both studies are
based on empirical evidence and hence the generic validity of their
findings remains to be verified.

In the presentwork,we seek to provide a thoroughunderstanding of the
implications of changing the simulation path in order to assess the constant
path method. The paper is organized as follows. We begin by presenting a
methodological description of randomized path simulations (section 2),
followed by the implementation of a constant path method (section 3) and
thequantificationof the associated computational gains (section4). Finally,
wediscuss some limitations of the covariancematrix evaluation (section5).

2. Theory of randomized paths simulations

In order to understand the implications of generating stochastic re-
alizations based on the same simulation path, the links between the
random function (RF) Z, the realizations z, and the path pi need to be

explored in some detail.

2.1. Definition of a random function

In probability theory, a random variable (RV) denoted X is a deter-
ministic function mapping the set of possible outcomes Ω of a random
phenomenon to their values, usually a real number ℝ,

X : Ω→ℝ (1)

ω7!x:

In the definition of a RV, Ω has to be a probability space, which im-
plies that each possible outcome ω has a well-defined probability. Thus,
the probability PðX � xTÞ is defined by the set of events
fω 2 Ω : XðωÞ � xTg.

For instance, a RV describing the sum of two rolled dice n1 and n2 is
defined as the function mapping every possible outcome ðn1; n2Þ to the
measure n1 þ n2

Xðfn1; n2gÞ ¼ n1 þ n2: (2)

With this formalism, the probability of the sum of two dice being 5 is
defined as

PðX ¼ 5Þ :¼ Pðfn1; n2 2 f1; 2; 3; 4; 5; 6g : n1 þ n2 ¼ 5gÞ
¼ Pðf1; 4g; f2; 3g; f3; 2g; f4; 1gÞ ¼ 4

�
62 ¼ 1=9: (3)

A realization xðlÞ is the value observed from a RV X given a specific
outcome of the random phenomenon, also called random variate, ωl

xðlÞ ¼ XðωlÞ: (4)

2.2. Sequential Gaussian Simulation

GS is an algorithmwhose purpose is to produce realizations zðlÞðuÞ of a
regionalized multi-Gaussian random function (RF) ZðuÞ.

1. A RF is a collection of indexed RV. If the indexation is multi-
dimensional, the collection is usually referred to as random field
instead.

2. A RF is called regionalized (Matheron, 1965) if it is distributed in a
continuous space domain D⊂ℝn,

Z ¼ fZðuÞ; u 2 Dg; (5)

where u represents a space coordinate vector.

3. A RF is multi-Gaussian if any finite collection of its components has a
multi-variate normal distribution. While this constraint is restrictive,
it allows for the RF to be fully determined by its first- and second-
order moments, that is, the mean μZ and the covariance matrix CZ

Z � N ðμZ ;CZÞ: (6)

SGS takes advantage of this multi-Gaussian property to produce re-
alizations of Z. It iteratively visits each node of the grid, computes the
kriging estimate andvariance error σE basedonpreviously simulatednodes
and samples a value from the corresponding conditional probability dis-
tribution. A newly simulated node thus becomes a conditioning node for
the next one to be simulated. Mathematically, this can be summarized as

ZðuiÞ ¼
Xi�1

j¼1

λjðuiÞZ
�
uj

�þ σEðuiÞUðuiÞ; 8i ¼ 1;…; n; (7)

where U is a standard Gaussian vector used for randomly sampling the
conditional distribution and λj are the kriging weights which define the
influence of the conditioning nodes.
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