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ARTICLE INFO ABSTRACT

Spectral methods provide many advantages for calculating gravity anomalies. In this paper, we derive a kernel
function for a three-dimensional (3D) fault model in the wave number domain, and present the full Fortran source
code developed for the forward computation of the gravity anomalies and related derivatives obtained from the
model. The numerical error and computing speed obtained using the proposed spectral method are compared
with those obtained using a 3D rectangular prism model solved in the space domain. The error obtained using the
spectral method is shown to be dependent on the sequence length employed in the fast Fourier transform. The
spectral method is applied to some examples of 3D fault models, and is demonstrated to be a straightforward and
alternative computational approach to enhance computational speed and simplify the procedures for solving
many gravitational potential forward problems involving complicated geological models. The proposed method
can generate a great number of feasible geophysical interpretations based on a 3D model with only a few vari-
ables, and can thereby improve the efficiency of inversion.
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1. Introduction

The gravimetry methods employed in physical geodesy, which is a
very important branch of geophysics, seek to evaluate and interpret
gravity anomalies that can provide considerable information regarding
the hidden structures below the earth surface, such as the depth of
geological bodies and the geometry and density variations in the struc-
ture of the subsurface (Hinze et al.,, 2013). The interpretation and
inversion of gravity anomalies are generally based on the understanding
obtained from theoretical mass distribution models, which are developed
according to the forward problem of computing the gravitational field
obtained from a particular mass distribution. Analytical expressions for
theoretical gravity anomaly distributions (or maps) are easily derived
from idealized bodies, and can help to simplify practical geological and
geophysical problems. For example, the theoretical gravity anomalies
obtained from idealized dike, cylinder, fault, and geological contact
models are essential for understanding gravimetry measurement results
(Sengupta and Das, 1977; Soto et al., 1983; Sharma and Bose, 1977;
Chacko and Bhattachyya, 1980). Usually, the gravity anomaly map ob-
tained from a two-dimensional (2D) or three-dimensional (3D) model can
be calculated in the space domain by integration if the boundaries of the
model are known. Accordingly, many useful forward analytical equations
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have been presented in the space domain (Talwain and Ewing, 1960;
Nagy, 1966). Nevertheless, complex and irregular idealized models can
greatly complicate the derivation of analytical expressions in the space
domain. However, the use of the Fourier transform method presents
spectral techniques that can provide for the more simple and rapid
computation of gravity anomalies in the wave number domain than in
the space domain (Bhattacharyya and Navolio, 1976). Related applica-
tions in the wave number domain have been numerous and well devel-
oped (Bhattacharyya, 1967; Cassano and Rocca, 1975).

Compared with the interpretation of idealized bodies in the space
domain, the use of spectral methods provides many interpretational ad-
vantages because forward gravitational field problems become very
straightforward, and are rapidly computed when transformed from the
space domain to the wave number domain. For example, convolution in
the space domain becomes multiplication in the wave number domain.
Moreover, the gradient operation in the space domain is only related to
the angular frequency in the wave number domain. Spectral methods
have been widely employed for the analysis of gravitational fields in
numerous studies (Sharma et al., 1970; Regan and Hinze, 1976, 1977,
1978; Bhattacharyya and Leu, 1977), and have proved very useful,
particularly for improving the computing speed and gravity anomaly
transformations. Parker (1973) presented a well-known rapid spectral
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Fig. 1. Schematic of the idealized 3D fault model. The model is described in terms of
3D Cartesian coordinates, where the positive z-direction is downward. The parameters a
and 6 represent the dip and strike angles, respectively. The parameters h; and h; represent
the depths of the top and bottom surfaces, respectively. The values 2a and 2b express the
width and length of the model, respectively. The point P(x,y,2) is the observation point of
the gravity anomaly. The point Q(&y, 7.(o) is the source location of the model center.

Table 1
Comparison of computation times between the space and wave number domian.

Case FFT Sequence Space domain computing Frequency domain
lengths time (s)* computing time*
Spectrum IFFT time
time (s) ®
1 256 x 256 0.125 0.016 0.078
2 512 x 512 0.406 0.141 0.641
3 1024 x 1024 1.828 0.906 2.703

*The computing time tested by the laptop with Intel Core i5-3360M CPU 2.8 GHz.

method for the forward computation of gravity anomalies obtained from
an uneven layer of material, and this approach is typically employed to
estimate the thickness of crust and subsurface undulation. This is one of
the most important methods in gravitational field studies because the
forward problem for an uneven subsurface structure can be calculated by
means of a Taylor series in the wave number domain rather than using
the integration of a large number of rectangular prisms. The iterative
inversion approach was also developed on the basis of Parker's formula
(Oldenburg, 1974), and numerous studies have implemented and dis-
cussed this algorithm (Gomez-Ortiz and Agarwal, 2005; Shin et al.,
2006). However, except for the forward problem applied to complex
idealized geometry models, few studies have proposed direct forward
approaches in the wave number domain. Moreover, analytical forward
equations for a non-simplified 3D fault model have also been
rarely studied.

In the present study, we derive an analytical equation and demon-
strate a forward computation approach for a non-simplified 3D fault
model in the wave number domain. Our approach is applied to several
examples of the 3D fault model for the purpose of error analysis and to
illustrate its use in solving realistic problems. The proposed forward
approach was programmed using the Fortran language, which has been
extensively employed in geophysical research (Shin et al., 2006;
Fernandez et al., 2008). The program code developed here is expected to
be very useful for many researchers, particularly for those researchers
who prefer to code using the Fortran language. Finally, we also discuss
further applications using the presented 3D fault model.

2. Forward computation of gravity anomalies in the wave
number domain

A gravity anomaly is the vertical derivative of the gravitational po-
tential U, which, in the space domain, can be expressed as
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U= G///?dv,

™
where G is Newton's gravitational constant, Ap is the density contrast,
and r is the distance between the field source and the point of observa-
tion. If we take a point of observation P at coordinates (x, y, z) and an
elementary mass Q having coordinates (&, #, ¢), the elementary volume

dV =dédnd¢ and r = \/(f —x)2+ (1 —y)*+ ({ — 2)°. The 2D Fourier
transform (-] of Eq. (1) can be written as

Flul=J Ue™ 2755 dxdy, (2)
where i = v/—1, and u and v are the angular frequencies in the x and y
directions, respectively. In order to understand how potential field
anomalies can be calculated in the wave number domain, Parker (1973)
has shown how a series of Fourier transforms can be used to calculate the
magnetic or gravitational anomaly. In this paper, we replace #[U] with
U(u,v) to express the 2D spectrum of U(x,y). If P is confined to the plane
z = 2o, the gravitational potential can be written in the wave number
domain as

Uu, v) =
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where w is the angular frequency, and @ = vu? + v2. The integral of Eq.
(3) can be conducted analytically as the 2D spectrum of the gravitational
potential for a known mass shape. A well-known straightforward rela-
tionship exists between the gravitational potential and its derivative in
the wave number domain:

FU) =w-FU]; FUJ|=iuFU|

F[U,] = iv-F[U]. “4)

Moreover, the gradient tensors of U can be easily derived, where the
2D spectrum expressions of the five independent gravity gradient tensors
can be written as follows:

LJ;[UYZ] = iuw-ﬁ[U]; g[Uﬂ} - ivw'g[U]§ LJ/T[UA)] = —MV-J[U}:,
F|Ua| = —-F([U] ; F[U,] = —v*-7|U].

)

The corresponding gravity anomaly in the space domain can be easily
obtained from the gravitational potential spectrum or its derivative by
means of the inverse Fourier transform.

In this study, we define a type of non-simplified 3D fault model,
which is illustrated in Fig. 1, and an analytical expression for this model
is derived in the wave number domain from Eq. (3). First, we define the
xy plane as 0, i.e.,, 2o = 0, and introduce the kernel function E(u,v)
as follows:

27GA
FU y)) = Ul v) = 2L E(w, v), Q)
We can express the limits of integration for this 3D model as
_ rha pnotbsing pEg+a—(n—ng)cotd —wl —i(Eutny
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where the parameters hj, hy, a, b, 0, and «, and the reference point
Q(&, 19, o) of the model are illustrated in Fig. 1. Computing the integral
of Eq. (7) for &, 5, and ¢, respectively, where related details are presented
in the Appendix, yields the following.
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