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A B S T R A C T

This research presents a novel Trajectory-based Tracking Analyst (TTA) that can track and link spatiotemporally
variable data from multiple sources. The proposed technique uses trajectory information to determine the posi-
tions of time-enabled and spatially variable scatter data at any given time through a combination of along tra-
jectory adjustment and spatial interpolation. The TTA is applied in this research to track large spatiotemporal data
of volcanic eruptions (acquired using multi-sensors) in the unsteady flow field of the atmosphere. The TTA en-
ables tracking injections into the atmospheric flow field, the reconstruction of the spatiotemporally variable data
at any desired time, and the spatiotemporal join of attribute data from multiple sources. In addition, we were able
to create a smooth animation of the volcanic ash plume at interactive rates. The initial results indicate that the
TTA can be applied to a wide range of multiple-source data.

1. Introduction

Computational Fluid Dynamics (CFD) techniques such as Large-Eddy
Simulation (LES) or Direct Numerical Simulations (DNS) can produce
very large, time-varying, multi-field data sets. Exploration and analysis
of these data sets are complicated processes due to their size, complexity
and time-varying nature. Therefore, instead of saving the simulations
into grid or finite element formats, numerical simulations of unsteady
flow fields are usually stored as a set of point features organized in
trajectories that pass through user-defined seed points (Lane, 1996; Max
and Becker, 1999; McKenna et al., 2002; Konopka et al., 2007; and
others). Particle tracing has been a central topic in flow visualization.
The bulk of the work, however, has relied on a velocity field repre-
sentation of the flow and has used numerical integration methods for
the tracing process (Post et al., 2003; McLoughlin et al., 2010; and
others). Since these integration-based techniques are computationally
expensive and time consuming, techniques have been developed to
efficiently sample the space and to use GPU parallelism to speed up the
process (Schafhitzel et al., 2007; Burger et al., 2009). Kruger et al.
(2005) advected particles on the GPU to allow for interactive visuali-
zation of steady flow on uniform grids to visualize streamlines and
stream ribbons.

On the other hand, scatter observations of constituents transported in
the flow field are usually made through direct measurements or remote
sensing instruments. Examples of these constituents are suspended sub-
stances, pollutants, and water vapor in the atmosphere. It is always
required to fuse the measurements from multiple sources to form a time
continuum which becomes problematic when the measurements are not
taken at the same times and locations. Such data fusion is important in
developing meaningful visualizations, and can serve several purposes
including spatiotemporal correction of orbital data and the resampling of
data into structured formats (Kohrs et al., 2013), domain filling of
missing data and plume tracking (Fairlie et al., 2014), and sensors cross
correlations (Wu et al., 2017).

In cases where scatter observations from all involved sensors are
referenced in the same time scale (i.e., regular in time) and completely
cover the area of interest at every time step, the spatiotemporal problem
is easier since it is reduced to spatial-only interpolation at every time step
(Philip and Watson, 1982; Franke, 1982; Montmollin et al., 1980; Isaaks
and Srivastava, 1989; and others). However, this is not the case in most of
the large scale spatiotemporal interpolation domains, where multiple
sensor types are involved. The problem of spatiotemporal data analysis
and visualization then becomes much more complicated due to the fact
that data is obtained from multiple sensor types, each with a different
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time scale. Further, sensor coverage is limited in both space and time.
Data from polar orbiting satellites constitutes a clear example of such
sensors since it has limited spatial coverage (strips) where the same re-
gion on Earth is visited once or twice a day depending on the satellite
orbital speed. In such cases, spatiotemporal interpolation is needed to
construct an instantaneous (i.e., at the same time) full scan of the whole
Earth. The spatiotemporal problem becomes more complex when more
than one satellite is involved. This paper develops an interpolation
technique that makes use of trajectory information to perform the
spatiotemporal interpolation in an attempt to provide a practical solution
to fill this gap.

2. Problem statement

The TTA (Trajectory-based Tracking Analyst) proposes a novel
spatiotemporal interpolation technique, called Trajectory-based Spatial
and Temporal Interpolation (TSTI). The TSTI was first used by Elshehaly
et al. (2014, 2015) for visualization purposes. The detailed description
and application of the TSTI method is presented here in the current study.
The method aims to interpolate motion field information at any given
location not given in the original trajectories. The interpolated trajec-
tories can then be used to move (“slide”) the points of interest (whether
they are remotely sensed detections or injected plume seeds in the flow
field) to the corresponding positions at the desired target times. Unlike
other established techniques (Vernier et al., 2013; Fairlie et al., 2014; and
others), the analysis environment in the TTA is not the circulation model
itself but the seeding is made completely outside the model (it only uses a
trajectory data set obtained from the model without seeding the de-
tections inside themodel itself). This has the advantages of: (i) simplicity:
the method works independently outside the model; (ii) efficiency: it
runs quickly and can seed big data sets; (iii) flexibility: it requires only
trajectory data whether from simulations or from RK4 integration of
velocity vectors obtained from image cross correlation and pattern
matching techniques; (iv) precision: the ability to seed high resolution
scatter data, e.g., narrow plumes; and (v) practicality: the ability to seed
and link different types of scatter data, i.e., different sensors, into the
flow field which facilitates data joining operations.

3. Methodology

The developed TSTI technique has two components: (a) along tra-
jectory adjustment (ADJUSTT) and (b) spatiotemporal interpolation
(SPATIOT). The idea is to use motion information (i.e., the spatial
translations) from the nearest m trajectories (m ¼ 4–8) and spatially
interpolate the translation information to the un-gauged location under
consideration based on its relative location to the trajectories. A detailed
description of the technique follows.

3.1. ADJUSTT

Data obtained from large unsteady state simulations is usually stored
in the form of trajectories, or pathlines, each consisting of a stream of
time-enabled points organized in a sequence of polylines. The attributes
of the trajectory points include information about their position in 3D, a
timestamp, and possibly a set of scalar values that are associated with
each point from simulation results (e.g. temperature, pressure, etc.). Each
polyline (i.e., trajectory) can be looked at as the locus of motion of a
particle at the different times on a time scale. The time step along the
trajectories ΔT is usually constant (or fractions of the constant). The
objective of ADJUSTT is to determine the position along the same tra-
jectory at any time instant within the time step. This is achieved through
relative second degree polynomial fitting. To elaborate, consider a tra-
jectory where point (XT1, Y T1, Z T1) denotes a position at time T1 on a
trajectory (Fig. 1), the position after dt < ΔT on the same trajectory (at
time T1þdt) can be obtained by adding the spatial displacement (trans-
lation) vector (Equation (1)):

0
@X

Y
Z

1
A

T1þdt

¼
0
@X

Y
Z

1
A

T1

þ
0
@ dx

dy
dz

1
A (1)

0
@ dx

dy
dz

1
A ¼

0
@ a1 a2

b1 b2
c1 c2

1
A�

�
dt
dt2

�
(2)

where (dx, dy, dz) is the spatial displacement vector (obtained from
Equation (2)) and a1, a2, b1, b2, c1, c2 are the coefficients of the second
degree polynomials. These coefficients can be calculated using the least
squares method, either on the fly during execution or during pre-
processing, and added as attributes to the original data set. In this
paper, we use the second option (pre-processing) to calculate the six
coefficients at every point along all trajectories (i.e., determine the sec-
ond degree polynomial that passes through every point and the next two
points on all trajectories by solving a simple least squares matrix form at
every trajectory point (Equation (3)):
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Since the first point is always the origin (t ¼ 0, dx ¼ 0, dy¼ 0, dz¼ 0)
on the relative frame of reference, the least squares summations in
Equation (3) are done for the next two points only where the second and
third points are (t1, dx1, dy1, dz1) and (t2, dx2, dy2, dz2), respectively. Note
that the spatial shifts are taken from the first point (i.e., the origin) while
t1 and t2 are the differences in time with the first point and usually equal
ΔT and 2ΔT respectively (if the time step of the trajectory data set
is constant).

3.2. SPATIOT

SPATIOT determines the translation during a certain period of any
point of interest (e.g., sensor detection or a point not available in the
simulation) by interpolating the corresponding shifts of the nearest tra-
jectories points (in time and space) to the point of interest. The spatial
interpolation is based on the inverse distance weighted (IDW) principle
in which closer points are given much higher weights. In order to explain
the interpolation, consider a point of interest at source time Ts for which
we need to determine the corresponding position at destination time Td
(note that this point of interest is not included in any of the simulation
trajectories). On the other hand, the trajectory simulation dataset con-
tains np polylines and total number of vertices N on a regular time scale

Fig. 1. ADJUSTT determines the position along trajectories at any required time t not
coinciding on the time step (ΔT ¼ T2-T1) of the simulation data set (i.e., dt <ΔT). This
requires the pre-calculation of the coefficients of second degree polynomials (a1, a2, b1, b2,
c1, c2). The second degree polynomials are used to predict the position along the trajectory
in between the simulation time step. Note that the coefficients are pre-calculated at all
simulation vertices using least squares and added as new attributes to simulation data sets.
Three positions (the current position and the subsequent two positions) are used in the
least squares to pre-determine the coefficients at all the points of the simulation.
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