Accepted Manuscript

Phase Composition Maps integrate mineral compositions with rock textures from the micro-meter to the thin section scale

Kyle V. Willis, LeeAnn Srogi, Tim Lutz, Frederick C. Monson, Meagen Pollock

PII: S0098-3004(17)30851-8

DOI: 10.1016/j.cageo.2017.08.009

Reference: CAGEO 4006

To appear in: Computers and Geosciences

Received Date: 19 May 2016
Revised Date: 1 August 2017
Accepted Date: 8 August 2017

Please cite this article as: Willis, K.V., Srogi, L., Lutz, T., Monson, F.C., Pollock, M., Phase Composition Maps integrate mineral compositions with rock textures from the micro-meter to the thin section scale, *Computers and Geosciences* (2017), doi: 10.1016/j.cageo.2017.08.009.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Phase Composition Maps Integrate Mineral Compositions with Rock
2	Textures from the Micro-meter to the Thin Section Scale
3	Kyle V. Willis ¹ , LeeAnn Srogi ¹ , Tim Lutz ¹ , Frederick C. Monson ² , and
4	Meagen Pollock ³
5	¹ Department of Earth and Space Sciences, West Chester University of Pennsylvania, West
6	Chester, PA 19383; ² Center for Microanalysis, Imaging, Research and Training, College of Arts
7	and Sciences, West Chester University of Pennsylvania, West Chester, PA 19383; ³ Department
8	of Geology, College of Wooster, Wooster, OH 44691
9	Corresponding author: LeeAnn Srogi, lsrogi@wcupa.edu
10	
11	Abstract
12	Textures and compositions are critical information for interpreting rock
13	formation. Existing methods to integrate both types of information favor high-
14	resolution images of mineral compositions over small areas or low-resolution
15	images of larger areas for phase identification. The method in this paper
16	produces images of individual phases in which textural and compositional
17	details are resolved over three orders of magnitude, from tens of micrometers to
18	tens of millimeters. To construct these images, called Phase Composition Maps
19	(PCMs), we make use of the resolution in backscattered electron (BSE) images
20	and calibrate the gray scale values with mineral analyses by energy-dispersive
21	X-ray spectrometry (EDS). The resulting images show the area of a standard
22	thin section (roughly 40 mm x 20 mm) with spatial resolution as good as 3.5
23	μm/pixel, or more than 81 000 pixels/mm², comparable to the resolution of X-

Download English Version:

https://daneshyari.com/en/article/6922278

Download Persian Version:

https://daneshyari.com/article/6922278

Daneshyari.com