
Research paper

Parallel Priority-Flood depression filling for trillion cell digital
elevation models on desktops or clusters

Richard Barnes
Energy & Resources Group, Berkeley, USA

a r t i c l e i n f o

Article history:
Received 28 January 2016
Received in revised form
17 June 2016
Accepted 1 July 2016
Available online 4 July 2016

Keywords:
Parallel computing
Hydrology
Geographic information system (GIS)
Pit filling
Sink removal

a b s t r a c t

Algorithms for extracting hydrologic features and properties from digital elevation models (DEMs) are
challenged by large datasets, which often cannot fit within a computer's RAM. Depression filling is an
important preconditioning step to many of these algorithms. Here, I present a new, linearly scaling algo-
rithm which parallelizes the Priority-Flood depression-filling algorithm by subdividing a DEM into tiles.
Using a single-producer, multi-consumer design, the new algorithm works equally well on one core,
multiple cores, or multiple machines and can take advantage of large memories or cope with small ones.
Unlike previous algorithms, the new algorithm guarantees a fixed number of memory access and com-
munication events per subdivision of the DEM. In comparison testing, this results in the new algorithm
running generally faster while using fewer resources than previous algorithms. For moderately sized tiles,
the algorithm exhibits ∼60% strong and weak scaling efficiencies up to 48 cores, and linear time scaling
across datasets ranging over three orders of magnitude. The largest dataset on which I run the algorithm
has 2 trillion (2�1012) cells. With 48 cores, processing required 4.8 h wall-time (9.3 compute-days). This
test is three orders of magnitude larger than any previously performed in the literature. Complete, well-
commented source code and correctness tests are available for download from a repository.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Digital elevation models (DEMs) are representations of terrain
elevations above or below a chosen zero elevation. Raster DEMs, in
which the data are stored as a rectangular array of floating-point
or integer values, are widely used in geospatial analysis for esti-
mating a region's hydrologic and geomorphic properties, including
soil moisture, terrain stability, erosive potential, rainfall retention,
and stream power. Many algorithms for extracting these proper-
ties require that, by following flow directions downhill from one
cell to another, it is always possible to reach the edge of the DEM.

Depressions (see Lindsay, 2016 for a typology) are inwardly
draining regions of a DEM which have no outlet and, therefore,
confound such algorithms. Although depressions may be re-
presentative of natural terrain, such as in the Prairie Pothole Re-
gion of the United States, they may also result from technical is-
sues in the DEM's collection and processing, such as from biased
terrain reflectance or conversions from floating-point to integer
precision Nardi et al. (2008). Note that depressions are distinct
from pits, which are single DEM cells whose neighbors all have a
higher elevation.

Depressions may be dealt with by filling them into the level of

their lowest outlet, as will be done here. Several authors have
argued that this approach produces inferior results compared to
approaches which either solely breach depression walls or com-
bine breaching and filling (Lindsay, 2016; Martz and Garbrecht,
1998; Grimaldi et al., 2007; Lindsay and Creed, 2005; Danner et al.,
2007). As a particularly egregious example of a situation in which
breaching would be better, Metz et al. (2010) show one river along
which 92% of cells were adjusted by depression-filling. However, a
DEM may be modified extensively without compromising results,
depending on the nature of the analysis being done. Additionally,
breaching and hybrid approaches continue to lag behind recent
developments in depression-filling, including the one described
here, both in terms of execution times and the size of the DEM it is
possible to process.

For a given DEM Z, depression-filling, such as described by this
paper, produces a new DEM W defined by the following criteria
(Planchon and Darboux, 2002):

1. The elevation of each cell of W is greater than or equal to its
corresponding cell in Z.

2. For each cell c of W, there is a path that leads from c to the
boundary by moving downwards by an amount of at least ϵ
between any two cells on the path, where ϵmay be zero. Such a
path is referred to as an ϵ-descending path.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cageo

Computers & Geosciences

http://dx.doi.org/10.1016/j.cageo.2016.07.001
0098-3004/& 2016 Elsevier Ltd. All rights reserved.

E-mail address: richard.barnes@berkeley.edu

Computers & Geosciences 96 (2016) 56–68

www.sciencedirect.com/science/journal/00983004
www.elsevier.com/locate/cageo
http://dx.doi.org/10.1016/j.cageo.2016.07.001
http://dx.doi.org/10.1016/j.cageo.2016.07.001
http://dx.doi.org/10.1016/j.cageo.2016.07.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2016.07.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2016.07.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2016.07.001&domain=pdf
mailto:richard.barnes@berkeley.edu
http://dx.doi.org/10.1016/j.cageo.2016.07.001

3. W is the lowest surface allowed by properties (1) and (2).

This paper considers only the most common case wherein ϵ¼0.
Setting ϵ > 0 requires more complex methods than those de-
scribed here.

DEMs have increased in resolution from 30 to 90 m in the re-
cent past to the sub-meter resolutions becoming available today.
Increasing resolution has led to increased data sizes: current DEMs
are on the order of gigabytes and increasing, with billions of cells.
Even in situations where only comparatively low-resolution data is
available, a DEM may cover large areas: 30 m Shuttle Radar To-
pography Mission (SRTM) elevation data has been released for 80%
of Earth's landmass (Farr et al., 2007). While computer processing
and memory performance have increased appreciably, develop-
ment of algorithms suited to efficiently manipulating large DEMs
is on-going.

If a DEM can fit into the RAM of a single computer, several
algorithms exist which can efficiently perform depression-filling
operations (see Barnes et al., 2014b for a review and Zhou et al.,
2016 for the latest work in this area). If a DEM cannot fit into the
RAM of a single computer, other approaches are needed.

In this paper, I will argue that existing approaches are in-
efficient and do not scale well. I will then present a new algorithm
which overcomes the problems identified. The new algorithm is
able to efficiently fill depressions in DEMs with more than a tril-
lion cells and will work on both single-core machines and super-
computers. The algorithm achieves this by subdividing not just the
data, but the problem itself: it is able to limit communication to a
fixed number of events per subdivision and I/O to a fixed number
of events per DEM cell. The algorithm may also offer efficiency
advantages even if a DEM can fit entirely into RAM.

2. Background

Existing algorithms have taken one of the two approaches to
DEMs that cannot fit entirely into RAM. They either (a) keep only a
subset of the DEM in RAM at any time by using virtual tiles stored
to a computer's hard disk or (b) keep the entire DEM in RAM by
distributing it over multiple compute nodes which communicate
with each other. I argue here that existing algorithms pay high
costs in terms of disk access and/or communication which prevent
them from scaling well; the new algorithm pays much lower costs.

Table 1 lists several authors mentioned here who have devel-
oped algorithms specifically for large DEMs. The sizes of the lar-
gest DEMs they test are listed, along with their choice of adjective
to describe this size. Gigacell (109 cells) DEMs represent the upper
limit of these tests. Here, I will go further than “massive” and

bigger than “huge” by testing a trillion cell, or teracell (1012 cells),
DEM. After ruling out “ginormous”, I refer to this new size class as
being rather large.

2.1. Virtual tiles

The virtual tile approach subdivides a DEM into tiles, a limited
number of which can fit into RAM at a given time. When the RAM
is full, tiles which are not being used are written to the hard disk.
Virtual tiles are advantageous because they can be easily in-
corporated into any existing algorithm by modifying the algorithm
so that it accesses data through a tile manager. The tile manager
maps cells to tiles and, if the tile is not in memory, retrieves it,
possibly writing an old tile to disk first. Since hard disk access is
slow, existing algorithms reduce I/O by favoring access to nearby
rather than distant cells. This helps increase the locality of access,
which is favourable for caching. Unfortunately, virtual tile algo-
rithms are unable to make strong locality guarantees and there-
fore, are ultimately unable to limit how often a particular tile will
be loaded into memory.

Arge et al. (2003), whose work is encapsulated in the
TERRAFLOW1 package and included with GRASS (GRASS Develop-
ment Team, 2016), were one of the first to examine I/O efficient
algorithms for depression-filling (among other operations). As
discussed in their paper, since disk access is costly, blocks of data
are read from memory in an attempt to amortize this cost. Arge
et al. describe a depression-filling algorithm which is bounded by

()O N Nlog I/Os and ()O N Nlog operations (see their paper and
Aggarwal and Vitter, 1988 for a more exact description of the access
complexity). Details of the algorithm's memory management are
not described. They compared the speed of their algorithm against
ArcInfo 7.1.2 (an industry-standard for the time) and achieved run-
times twice as fast and completed larger problems. Danner et al.
(2007) describe an algorithm similar to Arge et al. (2003), but
theirs performed a breaching operation on depressions.

Metz et al. (2011) present a Priority-Flood (Barnes et al., 2014b)
depression-breaching algorithm (now included with GRASS). The
algorithm uses the GRASS segment library as a tile manager and, in
comparison testing, achieves run-times almost twice as fast as
Arge et al. (2003), though the authors note that they expect that
the algorithm by Arge et al. (2003) would be faster on larger
datasets.

Gomes et al. (2012) present a virtual tile approach using an O
(N) integer variant Priority-Flood in their EMFlow package.2 The
DEM is subdivided into tiles accessed via a tile manager. Tiles are

Table 1
DEM sizes, dimensions, and processing times for authors working with large DEMs. The table should be used only to develop a sense of the maximum sizes and the range of
times it can take to process large DEMs. Times between algorithms should not be directly compared as different hardware has been used in all cases and different operations
have been performed in many cases. For instance, Yildirim et al. (2015) perform depression-filling while Lindsay (2016) performs depression breaching. The authors'
description of the size of their data is also included; all authors used “large”. Some algorithms are part of larger terrain analysis suites, these are listed in parentheses.

Source Year Cells Resolution Dimensions Adjective Time (min) Min/cell

This paper (RichDEM) 2016 2�1012 10 m ∼1,291,7152 Rather large 287 8�10�9

Gomes et al. (2012) 2012 3�109 30 m 50,000�50,000 Huge 58 1�10�8

Do et al. (2010) 2010 2�109 ?? 36,002�54,002 Huge 21 1�10�8

Do et al. (2011) 2011 2�109 ?? 36,002�54,002 Huge ??
Yildirim et al. (2015) (TauDEM) 2015 2�109 10 m 45,056�49,152 Large ??
Arge et al. (2003) (GRASS) 2003 1�109 10 m 33,454�31,866 Massive 3720 3�10�6

Lindsay (2016) (Whitebox GAT) 2015 9�108 3 arc-sec 37,201�25,201 Massive 8.6 1�10�8

Tesfa et al. (2011) 2011 6�108 ?? 24,856�24,000 Large 20 3�10�8

Wallis et al. (2009) (TauDEM) 2009 4�108 ?? 14,949�27,174 Large 8 2�10�8

Danner et al. (2007) 2007 3�108 3 m ?? Massive 445 1�10�6

Metz et al. (2010, 2011) (GRASS) 2010 2�108 30 m ?? Massive 32 6�10�7

1 http://www.cs.duke.edu/geo*/terraflow/
2 https://github.com/guipenaufv/EMFlow

R. Barnes / Computers & Geosciences 96 (2016) 56–68 57

http://www.cs.duke.edu/geo*/terraflow/
https://github.com/guipenaufv/EMFlow

Download English Version:

https://daneshyari.com/en/article/6922291

Download Persian Version:

https://daneshyari.com/article/6922291

Daneshyari.com

https://daneshyari.com/en/article/6922291
https://daneshyari.com/article/6922291
https://daneshyari.com

