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The optimization of subsurface flow processes under geological uncertainty technically requires flow
simulation to be performed over a large set of geological realizations for each function evaluation at
every iteration of the optimizer. Because flow simulation over many permeability realizations (only
permeability is considered to be uncertain in this study) may entail excessive computation, simulations
are often performed for only a subset of ‘representative’ realizations. It is however challenging to identify
a representative subset that provides flow statistics in close agreement with those from the full set,
especially when the decision parameters (e.g., time-varying well pressures, well locations) are unknown
a priori, as they are in optimization problems. In this work, we introduce a general framework, based on
clustering, for selecting a representative subset of realizations for use in simulations involving ‘new’ sets
of decision parameters. Prior to clustering, each realization is represented by a low-dimensional feature
vector that contains a combination of permeability-based and flow-based quantities. Calculation of flow-
based features requires the specification of a (base) flow problem and simulation over the full set of
realizations. Permeability information is captured concisely through use of principal component analysis.
By computing the difference between the flow response for the subset and the full set, we quantify the
performance of various realization-selection methods. The impact of different weightings for flow and
permeability information in the cluster-based selection procedure is assessed for a range of examples
involving different types of decision parameters. These decision parameters are generated either ran-
domly, in a manner that is consistent with the solutions proposed in global stochastic optimization
procedures such as GA and PSO, or through perturbation around a base case, consistent with the solu-
tions considered in pattern search optimization. We find that flow-based clustering is preferable for
problems involving new well settings (e.g., time-varying well bottom-hole pressures) or small changes in
well configuration, while both permeability-based and flow-based clustering provide similar results for
(new) random multiwell configurations. We also investigate the use of efficient tracer-type simulations
for obtaining flow-based features and demonstrate that this treatment performs nearly as well as full-
physics simulations for the cases considered. The various procedures are applied to select realizations for
use in production optimization under uncertainty, which greatly accelerates the optimization compu-
tations. Optimization performance is shown to be consistent with the realization-selection results for
cases involving new decision parameters.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

case considered, over a large set of realizations. Because compu-
tational cost scales directly with the number of realizations em-

In subsurface flow operations, decisions such as where to locate
new wells and how to operate existing wells are best made by
evaluating flow simulation results over an ensemble of realizations
intended to capture the current state of geological knowledge.
Evaluation of the consequences of different sets of decision para-
meters technically requires computing flow responses, for each
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ployed, it is preferable to use as few realizations as possible. If too
few realizations are considered, however, results may not re-
present the response from the full set, because geological un-
certainty is not properly modeled. It is thus evident that, in order
to achieve the optimal balance between cost and ‘representivity,’
the subset of geological realizations used for flow simulation must
be selected carefully.

The issue of realization selection is particularly important in
computational optimization under geological uncertainty. In
commonly used derivative-free algorithms (discussed below), for
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example, each iteration may involve, say, 100 function evaluations.
However, in order to optimize expected reservoir performance
over a set of N realizations (to account for geological uncertainty),
a single function evaluation requires flow simulation to be per-
formed over all of the realizations considered. If an optimization
requires (say) 1000 iterations, this corresponds to 10° x N, flow
simulations. If we take Ng to be 100, a total of 107 simulations will
be required. However, if we can find n, ‘representative’ realizations
(with n, < < N;) that can approximate the expected flow perfor-
mance of the full set of N realizations, then we will achieve
computational savings of a factor of Ng/n,, which can be very
substantial. Consistent with this, our intent here is to present a
general framework that can be used to appropriately select a re-
presentative set of n, realizations for use in optimization or deci-
sion making. Because the amount of computation required in
optimization is so large, it is cost-effective to perform some
number of flow simulations in determining the n, representative
realizations.

In this work, we introduce a new realization-selection method
based on clustering techniques. The method is intended to provide
a set of realizations that are most representative in terms of their
flow solutions for new decision parameters such as well controls
(e.g., time-varying well injection or production rates, or bottom-
hole pressures) or well locations. By representative, we mean that
flow results for the subset of realizations are in close agreement
with those computed for the full set of realizations. Our procedure
is quite general, and incorporates flow-based and permeability-
based features (either separately or in combination) in the clus-
tering. We define a low-dimensional flow-response vector that
concisely characterizes simulation results and enables us to
quantify the representivity of any subset of realizations relative to
the full set. The most appropriate features (to be used in the
clustering) will then be determined for several different problems
involving new sets of well controls or well locations in oil
reservoirs.

The problem of selecting a representative subset of realizations
from a large set has been previously investigated. In the context of
uncertainty assessment for future reservoir production, Scheidt
and Caers (2009a) introduced a realization-selection method using
kernel k-means clustering and streamline simulation. With this
method, a few representative realizations are selected for flow
simulation, with the goal that results for particular statistics
characterizing future oil production are similar to those for the
entire set. Scheidt and Caers (2009b) also proposed a distance
kernel method to select a subset of reservoir models that provide
an uncertainty range for a particular production response (such as
cumulative oil production versus time) in agreement with that of
the full set for a base operating scenario. Yeh et al. (2014) applied a
similar approach using flow-based features from streamline si-
mulation. Meira et al. (2015) and Rahim et al. (2015) introduced
optimization-based methods for selecting a subset of realizations
that are intended to be representative of the full set in terms of net
present value (NPV) distribution and simulation results. These
approaches were applied for a particular well configuration and
set of well controls. Armstrong et al. (2013) presented a multistage
programming with recourse procedure for selecting a re-
presentative subset of realizations in a mineral deposit problem.

Reservoir management often involves investigating the impact
(on, e.g., oil recovery) of new decision parameters. This could in-
clude sensitivity analysis, where the effect of heuristic changes in
decision parameters is investigated, or computational optimiza-
tion, where decision parameters associated with well locations
and/or controls are varied algorithmically to maximize an ex-
pected objective such as NPV. Within the context of well place-
ment optimization, a variety of derivative-free approaches have
been considered. These include global stochastic search methods

such as particle swarm optimization (PSO) (Onwunalu and Dur-
lofsky, 2010, 2011; Nwankwor et al., 2013; Humphries et al., 2014)
and genetic algorithms (GAs) (Giiyagiiler et al., 2002; Yeten et al.,
2003; Artus et al., 2006; Bouzarkouna et al., 2012). Local optimi-
zation methods, such as NEWUOA (Zhang et al., 2015) and pattern
search techniques (Wilson and Durlofsky, 2013), as well as gra-
dient-based methods (Zandvliet et al., 2008), have also been ap-
plied. For the optimization of (continuous) well settings, both
gradient-based methods (Brouwer and Jansen, 2004; Sarma et al.,
2006; Chen et al., 2012) and pattern search procedures (Echeverria
Ciaurri et al., 2011) have been considered. A recently developed
hybrid algorithm, which entails particle swarm optimization and
mesh adaptive direct search (PSO-MADS), has been shown to
outperform its component methods for combined well location
and control problems (Isebor et al., 2014a,b). This indicates that
both global random and local deterministic search components are
beneficial for reservoir optimization. Thus, for optimization under
uncertainty, representative realizations will need to be identified
for both types of searches.

Robust optimization of subsurface operations, in which geolo-
gical uncertainty is considered by optimizing over multiple reali-
zations, has been addressed in a number of studies (e.g., Yeten
et al., 2003; Bayer et al., 2008; van Essen et al., 2009; Tartakovsky,
2013; Isebor and Durlofsky, 2014). Because subsurface flow simu-
lation is usually computationally expensive, a small number of
realizations is typically used. Various strategies have been applied
in this context to select a representative subset of realizations. For
well control optimization, Shirangi and Mukerji (2012) selected
representative realizations by applying k-medoids clustering using
some flow-based features, while Yasari et al. (2013) selected rea-
lizations based on the ranking of NPVs obtained from an initial
control strategy. For well placement optimization, Wang et al.
(2012) applied k-means clustering, using a few static and simula-
tion-based quantities. Torrado et al. (2015) applied a similar ap-
proach using only static features. Yang et al. (2011) selected rea-
lizations for the robust optimization of SAGD operations by rank-
ing models in terms of NPV for a base well location and control
strategy. Recently, Shirangi and Durlofsky (2015) introduced an
‘optimization with sample validation’ (OSV) procedure to de-
termine the number of realizations to adequately represent the
entire set in optimization problems. Representative realizations
were selected from the NPVs computed for a base well config-
uration and control strategy. Under OSV, the NPVs are re-eval-
uated, and the number of realizations used in the optimization is
increased, if a validation criterion is not satisfied. We note finally
that there does not appear to have been extensive study of the
impact of the realization-selection procedure on optimization
results.

While several approaches for selecting small subsets of reali-
zations have been suggested, it is important to recognize that the
appropriate selection method may be different in different con-
texts. For example, a selected subset that is the most re-
presentative for a well control optimization problem (with fixed
well locations) may not be the best choice for a well placement
optimization problem, as these two problems are sensitive to
different geological details. In this work, we attempt to address the
realization-selection problem systematically. Toward this end, we
first describe a procedure for quantitatively assessing different
approaches using a flow-response variable. We then introduce a
general clustering method for the selection of representative rea-
lizations. In this clustering, each realization is represented by a
feature vector composed of a weighted combination of flow-based
and geological quantities. Principal component analysis (PCA) is
used to express the geology (permeability field) in terms of a small
number of features, while flow-based features are obtained by
solving one or more flow problems. The use of both full-physics
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