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a b s t r a c t

Component-based modeling frameworks make it easier for users to access, configure, couple, run and
test numerical models. However, they do not typically provide tools for uncertainty quantification or
data-based model verification and calibration. To better address these important issues, modeling fra-
meworks should be integrated with existing, general-purpose toolkits for optimization, parameter es-
timation and uncertainty quantification.

This paper identifies and then examines the key issues that must be addressed in order to make a
component-based modeling framework interoperable with general-purpose packages for model analysis.
As a motivating example, one of these packages, DAKOTA, is applied to a representative but nontrivial
surface process problem of comparing two models for the longitudinal elevation profile of a river to
observational data. Results from a new mathematical analysis of the resulting nonlinear least squares
problem are given and then compared to results from several different optimization algorithms in DA-
KOTA.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Many Earth science domains rely on numerical modeling to
gain a better understanding of Earth system processes. Modeling
addresses a wide variety of problems in the realms of climate,
weather, hydrology, land surface dynamics, geodynamics, geo-
physics, hydrogeophysics and structural geology, among others.
Earth system models are based on physical, chemical, biological
and stochastic processes that make it theoretically possible to
predict changes likely to occur at, below, or above a particular
location on Earth in response to various types of forcing. Data-
based model verification and validation – including more formal
data integration through model parameter estimation – and
quantification of ever-present uncertainty are critical in order to
develop reliable numerical models for observed Earth processes.

The Community Surface Dynamics Modeling System, or
CSDMS, is one example of a component-based modeling frame-
work (Peckham et al., 2013; Syvitski et al., 2014), employed in the
realm of Earth surface process dynamics, with capabilities cur-
rently being extended to deep Earth process modeling. Just as
CSDMS provides interoperability and coupling mechanisms for

process-based models, it could also provide simplified access to
model analysis programs. In this paper, we discuss extensions to
CSDMS that would be required for its component-based frame-
work to interoperate with uncertainty quantification and para-
meter estimation (inverse modeling) toolkits.

2. Background: models and modeling frameworks

2.1. What is a model?

There are many possible definitions of the word model. This
paper is concerned with computational models that predict the
evolution of one or more system state variables over time as a
function of observations at a given start time. These predictions
are made using a set of equations that express laws of physics and
other constraints on the problem of interest. Laws of physics are
often expressed as differential equations that include a time de-
rivative, and computational models use a discretization of space
and time and some combination of numerical methods to solve
these governing equations. Models generally require values for one
or more input variables, often used to describe the initial state of
the system and often specified as spatial scalar or vector fields.
These may be measured or estimated and are distinct from the
model's design parameters (also called control, model or

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cageo

Computers & Geosciences

http://dx.doi.org/10.1016/j.cageo.2016.03.005
0098-3004/& 2016 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail address: Scott.Peckham@colorado.edu (S.D. Peckham).

Computers & Geosciences 90 (2016) 152–161

www.sciencedirect.com/science/journal/00983004
www.elsevier.com/locate/cageo
http://dx.doi.org/10.1016/j.cageo.2016.03.005
http://dx.doi.org/10.1016/j.cageo.2016.03.005
http://dx.doi.org/10.1016/j.cageo.2016.03.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2016.03.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2016.03.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2016.03.005&domain=pdf
mailto:Scott.Peckham@colorado.edu
http://dx.doi.org/10.1016/j.cageo.2016.03.005


configuration parameters), that must be specified in the equations
that define the model itself. A model run generates numerical
values for output variables (i.e. simulated observations or predic-
tions) that can be compared to observations. A very simple ex-
ample is given by =y c xp, where x and y are input and output
variables, respectively, and c and p are design parameters.

2.2. What is a modeling framework?

Over the last decade, a number of different modeling frame-
works have emerged, both within academia and at several differ-
ent federal agencies. An example from the academic modeling
community is the NSF-funded CSDMS project (cited in the In-
troduction) which primarily serves the Earth surface process
modeling community. Other examples from the federal or opera-
tional modeling community include

� ESMF (Earth System Modeling Framework), which primarily
serves the atmosphere and ocean modeling community,

� OMS (Object Modeling System), developed by the USDA (US
Department of Agriculture) primarily for agricultural modeling
and

� FRAMES (Framework for Risk Analysis in Multimedia Environ-
mental Systems), developed by the US EPA (Environmental
Protection Agency), primarily for environmental modeling.

(Hill et al., 2004; David et al., 2002; Whelan et al., 1997). A project
called Earth System Bridge, funded as a building block in NSF's
EarthCube initiative, is developing adapters that make it easy for
any given model to be prepared as a plug-and-play component
that can be used in (or moved between) multiple modeling
frameworks, including those above.

The intent of all such modeling frameworks is to provide a
software environment in which users can choose models from a
collection and easily couple them to create customized, composite
models in a plug-and-play manner. This facilitates code re-use and
interoperability. The models in the collection may span a wide
variety of different physical processes and are often written by
many different authors, typically experts in their field. In many
cases, the input variables required by one model can be provided
by another model in the collection, so there is strong motivation to
couple them. However, the models typically differ in many ways,
such as their programming language, computational grid, time-
stepping scheme, variable names and units. In addition to pro-
viding a simple mechanism for coupling models, modeling fra-
meworks typically contain service components or mediators that
automatically reconcile differences between the models that
would otherwise prevent them from sharing variables. Examples
of mediators include spatial regridders, time interpolators, unit
converters and semantic mediators. These mediators and other
capabilities of the framework – such as the ability to write com-
posite model output to different file formats with standardized
metadata, or to provide a graphical user interface (GUI) and help
system – provide both model users and developers with sig-
nificant added value.

There is a strong interest in adding a new capability to mod-
eling frameworks, namely the ability to track and analyze un-
certainty either for a single (stand-alone) model or for a coupled
set of models. For example, this is one of the major goals of the
second funding cycle of the CSDMS project. Since several powerful,
integrated packages for uncertainty analysis already exist (Section
4), integrating one or more of them into a modeling framework
seems like the best way to achieve this goal. One such package,
called DAKOTA (Adams et al., 2013b, 2013a) is of particular interest
because it provides a unified interface to a large collection of open-
source packages for optimization and uncertainty quantification.

DAKOTA and similar packages offer an impressive suite of un-
certainty analysis tools, including tools for model sensitivity ana-
lysis (e.g. sampling methods to explore the design parameter
space) as well as inverse modeling (or parameter estimation).
However, the sensitivity analysis tools are easier to integrate
within a modeling framework because they do not usually require
capabilities beyond what a typical model (or composite model)
already provides. By contrast, inverse modeling requires con-
struction of a suitable objective function and computation of de-
rivatives and is also affected by how models are coupled. So al-
though we are interested in bringing all of the capabilities of
packages like DAKOTA into modeling frameworks like CSDMS, this
paper will focus on what a modeling framework must do to ac-
commodate inverse modeling. To set the stage, the next section
provides a very brief, self-contained overview of inverse modeling.
For a more extensive treatment, see Tarantola (2005), Caers (2011)
or Aster et al. (2013).

3. Background: inverse modeling methods

Forward modeling simply refers to running a computational
model for a given set of input variables and design parameters to
generate output variables. Inverse modeling refers to efforts to in-
vert this process, that is, to determine what a model's input vari-
ables and/or design parameters would need to be set to in order to
generate a given set of output variables. In most cases, this inverse
problem is ill-posed, meaning that there is not a unique set of input
variables and design parameters that can produce a given output,
but rather multiple sets. However, regularization methods can be
used to introduce additional criteria that discriminate between
and preferentially select from these multiple sets.

A forward model's performance can be quantified by defining a
metric that measures the “distance” between its output variables
(or predictions or simulated data) and independent measurements
(or observations). Differences between corresponding observed
and predicted values are known as residuals, and this metric –

known as the penalty, cost or objective function (Section 3.1) – is
typically a function of the residuals, input variables and design
parameters. Inverse modeling is concerned with how to make
forward models perform as well as possible (model calibration), or
with seeking the optimal input variables to predict observations to
within measurement error. They therefore make use of optimiza-
tion methods that seek to minimize an objective function, often
subject to additional constraints.

Earth system modelers range widely in their familiarity with
and adoption of inverse modeling methodology. For example,
groundwater modelers have a long history of using inverse mod-
els, while sediment transport modelers do not. Inclusion of these
methods in modeling frameworks should encourage broader use
of these methods.

3.1. Constructing an objective function

The objective function must be a metric that measures a forward
model's performance, or the abstract “distance” between observed
and model-predicted or simulated values. There are many differ-
ent metrics that can be used, such as those based on the one-
parameter family of Lp norms, given by
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where y is a vector with components yk and >p 0 is a scalar. The
case where p¼2, or the L2 norm, is the basis of the popular least
squares metric. While this metric gives disproportionate weight to
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