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a b s t r a c t

Meeting production targets in terms of ore quantity and quality is critical for a successful mining op-
eration. In-situ grade uncertainty causes both deviations from production targets and general financial
deficits. A new stochastic optimization algorithm based on ant colony optimization (ACO) approach is
developed herein to integrate geological uncertainty described through a series of the simulated ore
bodies. Two different strategies were developed based on a single predefined probability value (Prob) and
multiple probability values ( )Probn

t , respectively in order to improve the initial solutions that created by
deterministic ACO procedure. Application at the Sungun copper mine in the northwest of Iran demon-
strate the abilities of the stochastic approach to create a single schedule and control the risk of deviating
from production targets over time and also increase the project value. A comparison between two
strategies and traditional approach illustrates that the multiple probability strategy is able to produce
better schedules, however, the single predefined probability is more practical in projects requiring of
high flexibility degree.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The long-term open pit mine production planning is a large
combinatorial optimization problem that involves specifying the
blocks extraction sequence and their destination during mine life.
Mathematical formulation is aimed to maximize the net present
value (NPV) of the mining operation subject to a series of opera-
tional constraints such as reserve, slope, mining capacity, and
milling rate. The operational research techniques, which have been
developed to solve long-term production planning since 1960s,
could be categorized in two major classes of deterministic and
stochastic-based approaches.

All inputs are assumed as fixed value in the deterministic ap-
proaches. In early investigations, Dagdelen and Johnson (1986)
suggested an approach based on Lagrangian relaxation. Later, a
branch-and-cut algorithm was developed by Caccetta and Hill
(2003). The major drawback of these methods was their disability
in applying on real scale deposits where, typically, include hun-
dreds of thousands to millions of blocks. Several attempts have
been spent on reducing the problem size such as Fundamental
Trees methodology of Ramazan (2007). Moreover, the other class
of researches focused on the heuristic methods (Gershon, 1987),

combination of dynamic programming and heuristics (Tolwtnski
and Underwood, 1996), and meta-heuristic approach such as ge-
netic algorithm (Denby and Schofield, 1994), particle swarm al-
gorithm (Ferland et al., 2007), and ant colony algorithm (Sattar-
vand, 2009). A detailed review of the solution approaches could be
found in Osanloo et al. (2008).

Ignoring any kind of uncertainty is the common weakness of all
deterministic algorithms, which leads to create un-realistic plans
in terms of operational requirements. Dimitrakopoulos classifies
the uncertainties of mining projects into three major sources as
geological, technical, and economical uncertainties (Dimi-
trakopoulos, 1998).

Grade uncertainty is the major source of deviations from pro-
duction targets and general financial deficits. Vallee (2000) re-
ported that the average production rate of 60% observed mines in
the early years of the mining is 70% less than predicted rates,
mainly due to grade uncertainty. Uncertainty-based open pit op-
timization approaches could be categorized into variance-based
and simulation based groups. The first type involves integrating of
the grade variance in traditional deterministic algorithms. Albach
considering grade variance, developed a linear programming to
design a lignite mine (Albach, 1967). A similar approach based on
stochastic integer programming model has been suggested by
Gangwar (1973). Denby and Schofield (1995) used genetic algo-
rithm to integrate the grade variability in planning process.

The second uncertainty-based approach is based on using al-
ternative scenarios of the ore body called “Realization” that are
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provided by conditional simulation methods. Initially Ravenscroft
discussed the risk analysis in mine production planning based on
the realizations (Ravenscroft, 1992). Dowd (1994) integrated un-
certainties of the commodity price, mining costs, and processing
costs in a risk based optimization framework. Dimitrakopoulos
and Ramazan (2004) considering grade uncertainty, equipment
access, and mobility constraints suggested an LP approach that
was based on the expected ore block grades and the probabilities
of being above cutoffs. Godoy and Dimitrakopoulos (2004) pre-
sented a realization based meta-heuristic approach. They gener-
ated production schedules for all realizations and then, using Si-
mulated Annealing algorithm, combined the mining sequences in
order to produce a single schedule. Ramazan and Dimitrakopoulos
(2004) suggested an MIP model that starts with generating pro-
duction schedules for each realization and then, calculating the
extraction probability of each blocks in a given period. The blocks
with probability between zero and one have been used in a new
optimization model to generate a schedule. The same research has
been reported by Menabde et al. (2004). Dimitrakopoulos and
Abdel Sabour (2007) using real options valuation (ROV) method
attempted to handle multiple uncertainties such as grade and
economic parameters in production planning. Gholamnejad et al.
(2008) presented a stochastic programming based model that
grade uncertainty is integrated explicitly in the mathematical
programming model by applying chance constrained program-
ming approach to approximate it into a linear format. Lamghari
and Dimitrakopoulos (2012) considering the metal uncertainty,
utilized the tabu search procedure to solve the open pit optimi-
zation problem. Two different diversification strategies were used
to search the feasible domain in order to generate several initial
solutions which will be improved later by the tabu search
procedure.

The further researches led to multi-stage modeling methodol-
ogies in order to minimize the deviations from production targets
in addition to the NPV maximization (Benndrof and Dimi-
trakopoulos, 2009; Consuegra and Dimitrakopoulos, 2010; Leite
and Dimitrakopoulos, 2009; Ramazan and Dimitrakopoulos, 2007;
Smith, 2001). Ramazan and Dimitrakopoulos (2007) presented a
stochastic integer programing (SIP) model to generate production
schedules. The geological risk discounting concept (Dimi-
trakopoulos and Ramazan, 2004) was used in order to control the
risk distribution between production periods and minimize the
deviations from targets. Another similar SIP model was developed
by Leite and Dimitrakopoulos (2009). Benndorf improved the SIP
model by adding a third part to the objective function termed
“smooth mining controller” in order to create a safe operational
condition (Benndrof and Dimitrakopoulos, 2009). Consuegra and
Dimitrakopoulos (2010) developed a SIP model to integrate the
grade uncertainty in pushbacks design. Later on, Ramazan and
Dimitrakopoulos (2012) established a SIP model to integrate the
uncertainty of product supply in the optimization model.

Despite the development of numerous approaches to in-
tegrating the geological uncertainty, however, the solving meth-
odologies have been received relatively less attention. It has been
shown that the single stage models are unable to integrating the
grade uncertainty explicitly and creating an optimal single solu-
tion. In fact they are a series of repeated implementations of the
traditional approaches on ore body simulations. On the other
hand, the multi-stage stochastic models which have to be solved
by available mixed integer programming packages, are limited to
relatively small size instances.

This paper proposes an efficient solution methodology based
on Ant Colony Optimization (ACO) to solve the real scale planning
problems in presence of the geological uncertainty. The procedure
has the capability to simultaneously optimize the UPL and pro-
duction scheduling. Paper outlines the modeling procedure, two

different strategies and discusses the difference between obtained
solutions and provided deterministic solution by traditional
approach.

2. Formulation of the long-term production planning

Open pit production planning could be effectively modeled as
an Integer Programming (IP) formulation with the objective of
NPV maximization subject to a set of technical and operational
constrains. It can be expressed as following:
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Slope constraint: each block can only be mined if its pre-
decessors are already mined before.
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where ϵm (set of predecessors blocks of block n)
Reserve constraint: a block cannot be mined more than once.
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Processing capacity: the total ore processed during each period
should be within the predefined upper and lower limits.

∑ × × ≥ ̲ = ( )=
o w x O for t to T, 1 5n

N
n n n t1 ,

∑ × × ≤ ¯ = ( )=
o w x O for t to T, 1 6n

N
n n n t1 ,

Mining capacity: the total material mined during each period
should be within the predefined upper and lower limits.
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Average grade constraint: the average grade of material mind
during each period should be more than predefined value.
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Where

� N , is the total number of blocks,
� n, is the block index,
� T , is number of periods,
� t, is the period index,
� V ,n is value of nth block,
� x ,n t, is a binary variable associated to nth block that mined in tth

period,

⎧⎨⎩=x
if block is mined in period t

otherwise

1

0
n t,

� o ,n is a parameter indicating that the nth block is an ore block or
not,

⎪

⎧⎨
⎩=o if n block is an ore block

otherwise

1

0
n

th

� w ,n is the weight of nth block,
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