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a b s t r a c t

Accurately representing a velocity model for complex media still faces many challenges. The key issue
involves the description of discontinuity surface with complicated shapes, such as pinch-out layers, salt
domes with overhangs, and faulted interfaces. In this paper, a novel method for representing complex
models is proposed. Each velocity discontinuity is described as an iso-value surface of a signed distance
function, similar to an implicitly embedded interface. The implicit representation can construct the
surfaces with non-manifold characteristics or multi-valued properties, e.g., fractured interfaces or
mushroom models. For the velocity field within blocks, an approach involving the multiple copies of the
computational mesh is used to bind a mesh to a block. This approach can faithfully describe the velocity
distribution close to the block boundary without increasing the complexity of the computational mesh. A
new data structure, termed stratigraphic binary tree, is also proposed to define the topological re-
lationships between model elements (interfaces and blocks) and to efficiently manage the model data. A
number of examples for different applications are given to evaluate the feasibility of the proposed re-
presentation scheme. The velocity model represented by the proposed method can serve as a good
candidate for general ray-based forward and inverse applications.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The velocity of seismic wave propagation in the medium of
underground formations can provide valuable information re-
garding the subsurface structure and lithology. Therefore, acquir-
ing accurate velocity models becomes one of the central issues of
geophysics. In geophysical forward and inverse applications, the
parametric form of the velocity model lays an important founda-
tion, and can significantly affect either the process or the results.
Many parameterizations of velocity models have been proposed
for different applications. These parameterizations can be roughly
divided into two groups: velocity models without and with a
particular description of velocity discontinuities.

The striking feature of the first group is that velocity changes
slowly and smoothly without sharp variations. The widely adopted
strategy is to parameterize the velocity model in cells (or grids),
including regular and irregular parameterizations. The most at-
tractive characteristics of regular parameterizations are their

simple concept and easy formulation. Cells with constant velocity
or grid nodes with some interpolation functions are broadly em-
ployed forms. Facilitations to forward and inverse solvers have
made regular parameters very popular. However, a uniform grid
size of regular parameterizations greatly constrains the ability of
the model to recover the length scale of velocity anomalies. Al-
though the expression of velocity heterogeneity can be maximized
by reducing the grid size (the extreme case being that the size
selected is the minimum velocity structure wavelength), the re-
sulting model size is usually computationally prohibitive. The
largest advantage of irregular parameters is that they can offer
mesh size with variable scale, and thus overcome the inherent
disadvantages of the regular ones. Irregular parameters are usually
applied to fit the irregularity of data distributions, such as irregular
observation geometry or uneven ray coverage, to maximize the
amount of information extracted from data. In spite of the strong
ability to describe different scales of velocity information, the
implementation of irregular parameters would result in many
problems, such as computational inefficiency and complicated
computational algorithms for building, storing and searching.

Models in the second group are usually used to describe rela-
tively complicated velocity distributions with drastic changes of
values. A typical form is the layer model, which usually depicts the
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model region by several horizontally stratified layers. Forward and
inverse applications based on such models are not rare (Zelt and
Smith, 1992; Guiziou et al., 1996; Rawlinson et al., 2001). However,
the ability of layer models to describe more complicated structures
is not enough; instead, blocky models can perform well. A blocky
model describes an earth volume as an aggregate of irregularly
shaped sub-volumes bounded by surface patches. The velocity
distribution within a region is assumed to be varying slowly and
smoothly, whereas sharp velocity discontinuities are explicitly
modeled as interfaces. Gjøystdal et al. (1985) first introduced a
solid modeling technique to generate such a model. The term solid
modeling refers to the fact that the internal geometrical properties
of the model can be modeled as a combination of solids or vo-
lumes in 3D space. However, the algorithm defines complex re-
gions using counter-intuitive set theoretical operations on the
volumes limited by simpler surfaces. Pereyra (1996) further de-
veloped the method by using smooth surface macro-patches to
represent interfaces and smooth functions to describe properties
within the sub-region. The greatest advantage of Pereyra's method
is that the surfaces are continuous everywhere in the curvature,
whereas the main drawback is the nonlinear descriptions of sur-
faces, which may result in difficulties in some applications, such as
ray gaps in ray tracing. Xu et al. (2006, 2010) also extended the
work and used triangulated surfaces to represent interfaces. The
use of triangulated interfaces can facilitate calculations in many
occasions, e.g., the calculation in obtaining the intersection point
between a ray and an interface. However, the represented inter-
faces by their method are discontinuous. Although the smoothness
of the surface can be improved by applying some smoothing filters
for the normal vectors, the represented surface is still an approx-
imation and has errors.

Each type of model parameterization has its merits and dis-
advantages. An ideal velocity model can describe the velocity
anomaly faithfully, and is easily applicable to general applications.
The aim of the present study is to propose a novel model para-
meterization to describe very complex velocity models. Volu-
metric properties and velocity interfaces are described by different
approaches. The new parameterization can properly handle com-
plexities such as faulted interfaces, pinch-out layers or salt domes
with overhangs. It belongs to the second group but still exploits
the advantages of regular or irregular parameters. It can facilitate
many operations. For example, it can efficiently determine the
intersection point between a ray and an interface, and sufficiently
describe the velocity information in the proximity of interfaces.
Therefore, it can be a good candidate for general ray-based for-
ward and inverse applications.

2. Representation of velocity model

Blocky models are normally used to describe velocity model for
complicated media, as illustrated in Fig. 1. The overall model re-
gion is divided into an aggregate of irregularly shaped block ele-
ments. Seismic velocities vary smoothly within the block elements
but are discontinuous across the element boundaries. In general,
describing such a complicated velocity model mainly involves the
following subtasks: properly representing the discontinuity in-
terfaces, using the interfaces to partition geospace and assigning
velocity values to the nodes within the geological blocks.

2.1. Velocity discontinuity across geological interfaces

Various types of parameterizations are used to represent ve-
locity interface structures, such as a grid of depth nodes with a
specified interpolation function (Pereyra, 1996) or triangulated
surfaces (Xu et al., 2006, 2010). Unlike these explicit descriptions,

we use an implicit method — the level set method (LSM) to de-
scribe the velocity discontinuities (Ohtake et al., 2003; Frank et al.,
2007). The LSM was originally introduced to compute and analyze
the subsequent motion of an interface under a velocity field (Osher
and Sethian, 1988), which is widely used in the physical sciences
(Sethian, 1999; Osher and Fedkiw, 2003). The basic idea behind a
level set formulation is that each interface is described as the zero
level set or the zero-value contour of a signed distance function. If
we denote the signed distance function by xφ ( ), then at some gi-
ven point xA, xAφ ( ) is the distance from xA to the closest point on
the interface, and is negative if xA is inside the interface and po-
sitive if xA is outside the interface (Fig. 2). This implicitly re-
presented interface can then be evolved by the finite difference
solution of a set of partial differential equations, which explicitly
describe the behavior of the signed distance function over time.
Generally, the LSM describes the evolution of an n-dimensional
manifold in n 1( + )-dimensional space. Thus, a curve is tracked on
a 2D grid of points and a surface is tracked on a 3D grid of points.
More details of the implementation of the LSM are given by Osher
and Fedkiw (2003).

The strength of the LSM lies in its implicit representation of an
interface. Topological changes such as breaking and merging are
handled naturally. Many studies have focused on the reconstruc-
tion of closed and manifold surfaces by using this method (Osher
and Fedkiw, 2003; Zhao et al., 2001). However, employing this

Fig. 1. Internal view of a typical blocky model, accompanied by complicated geo-
logical phenomenon, including a fault, intrusion and pinch-out. Eight interfaces
H i 0, , 7i ( = … ) divide the model region into seven blocks S j 0, , 6j ( = … ). It should
be noted that although block S2 is faulted and intruded by S4, the broken parts are
still considered to be a single unit. The same is true for S3.

Fig. 2. Level set representation of an interface. In this example, the zero level set of
the signed distance function is a circle.
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