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a b s t r a c t

Statistical and now machine learning prediction methods have been gaining popularity in the field of
landslide susceptibility modeling. Particularly, these data driven approaches show promise when tack-
ling the challenge of mapping landslide prone areas for large regions, which may not have sufficient
geotechnical data to conduct physically-based methods. Currently, there is no best method for empirical
susceptibility modeling. Therefore, this study presents a comparison of traditional statistical and novel
machine learning models applied for regional scale landslide susceptibility modeling. These methods
were evaluated by spatial k-fold cross-validation estimation of the predictive performance, assessment of
variable importance for gaining insights into model behavior and by the appearance of the prediction (i.e.
susceptibility) map. The modeling techniques applied were logistic regression (GLM), generalized ad-
ditive models (GAM), weights of evidence (WOE), the support vector machine (SVM), random forest
classification (RF), and bootstrap aggregated classification trees (bundling) with penalized discriminant
analysis (BPLDA). These modeling methods were tested for three areas in the province of Lower Austria,
Austria. The areas are characterized by different geological and morphological settings.

Random forest and bundling classification techniques had the overall best predictive performances.
However, the performances of all modeling techniques were for the majority not significantly different
from each other; depending on the areas of interest, the overall median estimated area under the re-
ceiver operating characteristic curve (AUROC) differences ranged from 2.9 to 8.9 percentage points. The
overall median estimated true positive rate (TPR) measured at a 10% false positive rate (FPR) differences
ranged from 11 to 15pp. The relative importance of each predictor was generally different between the
modeling methods. However, slope angle, surface roughness and plan curvature were consistently highly
ranked variables. The prediction methods that create splits in the predictors (RF, BPLDA and WOE) re-
sulted in heterogeneous prediction maps full of spatial artifacts. In contrast, the GAM, GLM and SVM
produced smooth prediction surfaces. Overall, it is suggested that the framework of this model evalua-
tion approach can be applied to assist in selection of a suitable landslide susceptibility modeling tech-
nique.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Mitigating the impacts of landslides remains a great challenge
for land-use planners and policy makers. Landslide susceptibility
models, which are used to derive maps of locations prone to
landslides, can support and enhance spatial planning decisions
focused on reducing landslides hazards. Currently there is a vast

selection of quantitative methods applied for spatial modeling and
predicting landslide susceptibility (Chung and Fabbri, 1999; Guz-
zetti et al., 1999; Dai et al., 2002; van Westen et al., 2003; Bren-
ning, 2005; Goetz et al., 2011; Pradhan, 2013). Quantitative
methods for modeling landslide susceptibility can be generalized
into physically-based and statistical approaches (Soeters and van
Westen, 1996; van Westen et al., 1997). This study focuses on
statistical and machine learning techniques, which have become
common approaches for modeling landslide susceptibility over
large regions (van Westen et al., 1997; Brenning, 2005; Petschko
et al., 2014, Micheletti et al., 2014).

The basic assumption of the empirical approach is that future
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landslides are likely to occur in similar conditions of the past
(Varnes, 1984). Typically, a range of predictors (i.e., independent
variables) is used to represent landslide preparatory conditions
(van Westen et al., 2008). The exact relationship of the predictors
to the response (i.e., landslide presence/absence) is not always
well known a priori. In most cases, the predictors are proxies for
conditions and processes that are difficult to measure across large
regions (Pachauri and Pant, 1992; Guzzetti et al., 1999; Goetz et al.,
2011). The susceptibility model output is a prediction surface or
map that spatially represents the distribution of predicted values,
usually as probabilities distributed across grid cells.

The freedom of choice to decide which modeling method is
most suitable for a particular application is challenging. Numerous
comparisons of susceptibility modeling methods have been con-
ducted; yet no single best method has been identified (Brenning,
2005; Yesilnacar and Topal, 2005; Lee et al., 2007; Yilmaz, 2009,
2010; Yalcin et al., 2011; Goetz et al., 2011; Pradhan, 2013). The
search for the optimal susceptibility modeling method is a com-
plicated one and should not only consider model accuracy. Ro-
bustness to sampling variation and adequacy to describe processes
associated with landslides are also crucial model properties
(Frattini et al., 2010).

The simplest approach to select an optimal model for predic-
tion is to compare the error rates estimated from cross-validation,
where the modeling method with the lowest error estimate is
determined as the best one to use. This assessment on the pre-
diction performance is also viewed as essential for a model to have
any practical or scientific significance (Chung and Fabbri, 2003;
Guzzetti et al., 2006). There are a variety of measures to assess the
accuracy of landslide susceptibility models. Common ones are
derived from success rate curves, prediction rate curves (Chung
and Fabbri, 2003) or receiver operating characteristic (ROC) curves
(Brenning, 2005; Beguería, 2006; Gorsevski et al., 2006; Frattini
et al., 2010). It is necessary to carefully select a suitable perfor-
mance measure. Ideally, this measure should communicate per-
formance in the context of the model application (Brenning,
2012a). Performance should also be assessed using test sets that
are independent from the training set used to build the prediction
model, resampling-based estimation methods such as cross-vali-
dation being the state of the art (Brenning, 2012a): cross-valida-
tion utilizes the entire dataset for training and testing the model.

The ability to communicate model behavior is a desirable
quality for landslide susceptibility models (Brenning, 2012a).
Generally speaking, users feel more comfortable in the practical
application of a model if they understand how the model works.
The ability of a model to adequately describe the system behavior
can be assessed by determining how well the predictors represent
the processes associated with landslides (Frattini et al., 2010). In
statistical methods, this is relatively straight forward compared to
machine learning models. The model coefficients from generalized
linear models can be used to evaluate the relative importance of
landslide predictors (Dai and Lee, 2002; Ayalew and Yamagishi,
2005). Variable importance has also been estimated for regression
models by observing the relative frequencies of variable selection
when an automatic stepwise variable selection method has been
applied and tested with cross-validation (Brenning, 2009; Goetz
et al., 2011; Petschko et al., 2014). In contrast, the internal me-
chanisms defining the representation of response by the pre-
dictors are difficult to interpret in machine learning models be-
cause of their ‘black box’ nature. Micheletti et al. (2014) demon-
strated how some feature selection properties of different machine
learning techniques can be implemented to assess the relative
importance of variables for landslide susceptibility modeling.
However, since their approach applied features selection methods
only relevant to the corresponding machine learning technique,
making comparisons of variable importance with other modeling

techniques can be challenging. A standardized approach for com-
paring the relative variable importance of different modeling sta-
tistical and machine learning techniques for geospatial problems
was demonstrated by Brenning et al. (2012b). They assessed
variable importance using internal estimates of changes in error
rates by randomly permuting predictors in out-of-bag samples
(Breiman, 2001; Strobl et al., 2007).

There are many criteria that can be considered for model se-
lection in the context of landslide susceptibility (Brenning, 2012a).
This study focuses on one particular aspect, which is the predictive
performance. Therefore, a rigorous assessment of prediction per-
formance is performed on various statistical and machine learning
techniques in an attempt to determine the ‘best’ predictive model.
The modeling techniques include logistic regression (GLM), gen-
eralized additive models (GAM), weights of evidence (WOE), the
support vector machine (SVM), random forest classification (RF),
and bootstrap aggregated classification trees (bundling) with pe-
nalized discriminant analysis (BPLDA). The importance of pre-
dictor variables in each model is also analyzed to demonstrate
how a standard measure of variable importance can be applied to
communicate and compare model behavior, even when a model is
considered ‘black box’. The main objective of this paper is to de-
monstrate an approach to make a rigorous comparison of landslide
susceptibility models for the purpose of spatial prediction.

2. Materials and methods

2.1. Study area

Multiple areas of interest (AOIs) were selected to observe
model behavior under different landslide conditions. The model-
ing techniques were tested on AOIs that were each 50 km2 and
within the province of Lower Austria (Fig. 1). The Molasse AOI
(Fig. 1a) is located in a relatively low lying basin (o300 m a.s.l). It
mainly consists of sand and clay sediments, sandstones, clays-
tones, and marls. These bedrock materials can be covered by
Quaternary gravels and eolian sediments (loess). Deep-seated and
shallow landslides occur in this area. The Austroalpine AOI
(Fig. 1b), which includes the Upper Austroalpine lithology units, is
made up of predominately steep terrain, and has the highest ele-
vations in Lower Austria (1000–2000 m a.s.l). The lithology is
dominated by limestone and dolomite rock, with some inter-
bedded strata of claystone and marl. Landslides in the Aus-
troalpine area are typically shallow. Generally, the Flysch AOI
(Fig. 1c) is very susceptible to landslide activity (Petschko et al.,
2014). This low mountain region has exceptionally undulating
terrain, and consists of sedimentary rocks that are made up of
layers of sandstones, marls and claystones. The main triggers for
landslides in Lower Austria are intense rainfall and rapid snow-
melt events (Schwenk, 1992; Schweigl and Hervás, 2009). For
more details on the lithology and geology of Lower Austria, please
refer to Gottschling (2006) and Wessely (2006).

2.2. Landslide inventory

The landslides in this analysis are a subset of an inventory for
Lower Austria that has been previously published by Petschko
et al. (2014), which consists of mapped initiation areas for deep-
seated and shallow landslides. These landslides were mapped in a
geographic information system (GIS) using topographic derivatives
(e.g. hillshade and slope angle maps) of an airborne laser scanner
(ALS) digital terrain model (DTM) with a 1 m�1 m spatial re-
solution, which was acquired between 2006 and 2009. The general
procedure for mapping these landslides was similar to Schulz
(2004, 2007). This inventory consists of points (single grid cells)
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