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a b s t r a c t

Relative radiometric normalisation (RRN) is a vital step to achieve radiometric consistency among
remote sensing images. Geo-analysis over large areas often involves mosaicking massive remote sensing
images. Hence RRN becomes a data-intensive and computing-intensive task. This study implements a
parallel RNN method based on the iteratively re-weighted multivariate alteration detection (IR-MAD)
transformation and orthogonal regression. To parallelise the method of IR-MAD and orthogonal
regression, there are two key problems: the normalisation path determination and the task dependence
on normalisation coefficients calculation. In this paper, the reference image and normalisation paths are
determined based on the shortest distance algorithm to reduce normalisation error. Formulas of
orthogonal regression are acquired considering the effect of the normalisation path to reduce the task
dependence on the calculation of coefficients. A master-slave parallel mode is proposed to implement
the parallel method, and a task queue and a process queue are used for task scheduling. Experiments
show that the parallel RRN method provides good normalisation results and favourable parallel speed-
up, efficiency and scalability, which indicate that the parallel method can handle large volumes of
remote sensing images efficiently.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In remote sensing applications, there is an increasing need to
analyse remote sensing data over large areas, which involves
mosaicking massive remote sensing images. Geo-analysis with
remote sensing images is often conducted under the condition
that the images are radiometrically consistent. As remote sensing
images are acquired on different dates and different environmen-
tal or sensor conditions, relative radiometric normalisation (RRN)
is routinely implemented to minimise radiometric differences
among images. The RRN method applies one image as a reference
and adjusts the radiometric properties of the subject images to
match the reference image (Hall et al., 1991). Mosaicking a large
area requires the processing of a number of adjacent images; thus
the RRN process is a computing-intensive and time consuming
task. In recent years, emerging parallel hardware architecture,
such as computer clusters and multi-core processes, offers oppor-
tunity to enhance the performance of the processing of raster
images (Valencia et al., 2007; Lee et al., 2011; Guan et al., 2012;
Maulik and Sarkar, 2012; Van Den Bergh et al., 2012). To meet the

demands of rapid radiometric normalisation of remote sensing
images for mosaicking, it is necessary to implement RRN methods
in parallel framework.

A few studies have been performed on the parallelisation of
mosaicking (An et al., 2002; Wang et al., 2010; Chen et al., 2011;
Wu et al., 2013). Most of them use histogram matching for
radiometric normalisation because the process of histogram
matching for each subject image is independent and can be easily
parallelised. Although histogram matching is useful to match data
of the same scene acquired on different dates with slightly
different sun angles or atmospheric effects (Yang and Lo, 2000),
it is not useful for assembling several images into a mosaic because
they do not have common constant reflectance targets
(Shimabukuro et al., 2002). Typically, the RRN methods used for
mosaicking utilise a linear comparison of statistical characteristics
of overlaps between adjacent images to derive gains and offsets
from pseudo-invariant features (PIFs) (Hall et al., 1991; Du et al.,
2002; Olthof et al., 2005; Paolini et al., 2006; Canty and Nielsen,
2008). Canty et al. (2004) demonstrated a successful example of
mosaicking by automatically selecting invariant pixels between
images using the multivariate alteration detection (MAD) techni-
que (Nielsen et al., 1998). This mosaicking technique selects
invariant pixels automatically except a decision threshold, and
provides a favourable result with other manual methods (Schmidt
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et al., 2005; Schroeder et al., 2006). The method also uses
orthogonal linear regression to perform the actual normalisation,
which is preferred over the ordinary least squares regression.
Canty and Nielsen (2008) introduced an iteratively re-weighted
modification of MAD transformation (IR-MAD), which is superior
to the ordinary MAD transformation in identifying significant
change, particularly for data sets in which the fraction of invariant
pixels is relatively small. To parallelise the method of IR-MAD and
orthogonal linear regression, there is a “two-body problem”,
which leads to the subject images to be normalised in order, to
be solved. Based on the RRN method of IR-MAD and orthogonal
linear regression, the “two-body problem” is analysed and corre-
sponding solutions are suggested. The solutions include three
procedures: determining the reference image, generating a tree
composed of paths from subject images to the reference image and
establishing formulas to calculate coefficients for each subject
image with the least dependence. According to these solutions, the
parallel scheme of RRN is proposed and the parallel method is
implemented on specific parallel architecture with parallel
techniques.

The rest of this paper is organised as follows. Section 2
introduces the RRN method of IR-MAD and orthogonal regression.
Section 3 analyses the “two-body problem” in parallelising the
method; and gives corresponding solutions and the parallel
scheme. The performance experiments and analysis of the parallel
method is discussed in Section 4. The last section gives the
conclusion and the further study direction.

2. RRN using IR-MAD and orthogonal regression

The RRN method addresses two overlapping images: a refer-
ence image and a subject image. First, IR-MAD is performed to
select invariant pixels from overlapping area. Then, orthogonal
regression with the selected invariant pixels is employed to
calculate normalisation coefficients for each band of the subject
image. With normalisation coefficients, linear regression equations
are set up, and finally normalised pixel intensities of the subject
image are calculated using the equations.

2.1. IR-MAD for RRN

The IR-MAD method was first demonstrated by Canty and
Nielsen (2008) for automatically selecting invariant pixels from
the overlapping area of two adjacent images.

For two K band overlapping multispectral images, the pixel
intensities in the overlapping area of the images are represented
as F and G, respectively. Fi represents the intensities of the ith band
of F, and Gi represents the intensities of the ith band of G. Consider
the random variables U and V generated by any linear combina-
tions of the spectral bands intensities as

U ¼ aTF ¼ a1F1þa2F2þ⋯þaiFiþ⋯þaKFK
V ¼ bTG¼ b1G1þb2G2þ⋯þbiGiþ⋯þbKGK

ði¼ 1…KÞ ð1Þ

The random variable created by the difference U–V combines
change information into a single image. With suitable vectors a
and b, the difference U–V can reveal the most changes, and the
MAD variates are defined as

MADi ¼UðK� iþ1Þ �V ðK� iþ1Þ ði¼ 1…KÞ ð2Þ

The vectors a and b can be calculated by standard canonical
correlation analysis (CCA), to the F and G (Nielsen et al., 1998).

Let the random variable Z represent the sum of the squares of
the standardised MAD variates:

Z ¼ ∑
K

i ¼ 1

MADi

σMADi

� �2

ð3Þ

where σMADi is the variance of the no-change distribution.

σ2MADi
¼ VarðUK� iþ1�VK� iþ1Þ ði¼ 1…KÞ ð4Þ

The no-change probabilities of observations can be defined as

Prðno changeÞ ¼ 1�Pχ2 ;K ðzÞ ð5Þ
The method described above is the process of MAD. In the IR-

MAD method, the process of MAD iterates. The weights of all
observation in the first iteration are one, and in the next iteration,
the weights of observations are defined by the no-change prob-
abilities. The entire process is iterated until some stopping
criterion is met. The stopping criterion may be that there is little
change in the canonical correlations or an iteration number is set.
A threshold t is set and pixels that satisfy Pr(no change)4 t are
selected as the invariant pixels for regression.

2.2. Orthogonal regression

As mentioned above, the RRN method is developed under the
assumption that the relationship between the intensities of
invariant pixels in overlapping areas can be approximated by
linear functions. Considering two overlapping multispectral
images, each has K bands and N invariant pixels. One is selected
as the reference, and the other is the subject image to be normal-
ised. The formulation of orthogonal regression for RRN is

prefij �εij ¼ αiþβiðpsubij �δijÞ ðj¼ 1…NÞ ði¼ 1…KÞ ð6Þ

where prefij is the intensity of the jth invariant pixel in the ith is
band of the reference image, and psubij is the intensity of the jth
invariant pixel in the ith band of the subject image. αi and βi are
normalisation coefficients for the ith band in the subject image. εij
and δij represent measurement errors of the intensities of the jth
invariant pixel in the ith band of the reference image and the
subject image. The estimator of αi and βi:

β̂i ¼
ððsrefi Þ2�ðssubi Þ2Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððsrefi Þ2�ðssubi Þ2Þ2þ4s2i

q
2si

α̂i ¼ prefi � β̂ipsubi ð7Þ

with

ðssubi Þ2 ¼ 1
N

∑
N

j ¼ 1
ðpsubij �psubi Þ2

ðsrefi Þ2 ¼ 1
N

∑
N

j ¼ 1
ðprefij �prefi Þ2

si ¼
1
N

∑
N

j ¼ 1
ðpsubij �psubi Þðprefij �prefi Þ ð8Þ

where prefi and psubi are the means of the pixel intensities in the ith
band of the reference image and the subject image.

3. Parallel implementation of RRN for mosaicking

3.1. The “two-body” problem

The “two-body” problem refers to the condition that RRN can
only address a single pair of images at a time and that the
normalisation coefficients of an image may be affected by those
of other images. In a typical process of RRN for mosaicking, an
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