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a b s t r a c t

A shape optimization algorithm is presented that estimates the ice thickness distribution within a
three-dimensional, shallow glacier, given a transient surface geometry and a mass-balance distribution.
The approach is based on the minimization of the surface topography misfit in the shallow ice
approximation by means of a primal-dual procedure. The method's essential novelty is that it uses
surface topography and mass-balance data only within the context of a time-dependent problem with
evolving surface topography. Moreover, the algorithm is capable of computing some of the model
parameters concurrently with the ice thickness distribution. The method is validated on synthetic and
real-world data, where the choice of its Tikhonov regularization parameter by means of an L-curve
criterion is discussed.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

While complete digital elevation models (DEM) of surface topo-
graphy can be obtained accurately by geophysical means, bedrock
topography measurements can only be performed at selected loca-
tions and for a limited sample of glaciers (Christensen et al., 2000).
Moreover, ice rheology, surface mass-balance, and basal sliding
depend on parameters whose physical values can hardly be measured
precisely and are therefore still the subjects of current research
(Gudmundsson, 1999; Huss et al., 2008; Avdonin et al., 2009; Huss
et al., ; Arthern and Gudmundsson, 2010; Jouvet et al., 2011;
Habermann et al., 2012; Petra et al., 2012; Budd et al., 2013). In this
paper, focus is put on the computation of a glacier's subglacial
topography from surface topography and mass-balance measure-
ments. Since the surface topography is known, the problems of
determining the glacier's ice thickness or basal topography are
equivalent.

Direct methods based on the perfect plasticity assumption
deduce the ice thickness from a basal yield stress (Haeberli and
Hoelzle, 1995; Li et al., ; Paul and Linsbauer, 2012). Alternative
procedures relying on mass turnover and parallel-sided slabs or

shallow glaciers (Hooke, 2005; Greve and Blatter, 2009; Paterson
and Cuffey, 2010) supply an ice thickness distribution from
analytical inversions (Farinotti et al., 2009; Michel et al., 2013b).
Moreover, the recently introduced transient inverse method that
iteratively updates the ice thickness with the surface topography
discrepancy successfully inverts surface topography data (van Pelt
et al., 2013; Michel et al., 2013b). Literature is also abundant on
methods aiming at determining a glacier's basal properties,
namely basal topography and sliding, from surface velocity mea-
surements (Gudmundsson et al., 2001; Thorsteinsson et al., 2003;
Raymond and Gudmundsson, 2009; Raymond-Pralong and Gud-
mundsson, 2011; Farinotti et al., 2012; McNabb et al., 2012;
Gessese, 2013). The algorithm devised in this contribution
improves the bedrock topography update of the transient inverse
method by taking into account the non-locality of bedrock-to-
surface topography perturbation transfers due to ice flow
dynamics. Moreover, it combines subglacial topography recon-
struction with computation of the model parameters.

The aforementioned direct inversion algorithms have the
advantage of being easily implementable. Nevertheless, most of
them are slow, especially in three space dimensions. Therefore, a
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more efficient, gradient-based method is here tailored for three-
dimensional, sliding, transient, shallow glaciers. Its flexibility
allows to simultaneously compute both the ice thickness distribu-
tion and ice rheology and surface mass-balance parameters.
Although its implementation requires much more coding and
computations by hand than the existing direct methods, this
versatile procedure has the convenience of being more accurate.
This preliminary study highlights the possibilities of the method
and improves targeting the search for new algorithms for the
Stokes model (Gudmundsson, 1999; Zwinger et al., 2007; Jouvet,
2010; Jouvet et al., 2009), in which case further complications
arise, namely due to meshing issues. Many algorithms already
exist for the shape optimization of time-independent PDE-con-
strained problems (Abe and Koro, 2006; Allaire et al., 2004).
Literature is however less profuse on such methods aiming at
PDE-constrained problems where the PDE is a time-dependent,
free surface equation (see e.g. Kasumba and Kunisch, 2012).

In the simplified context of time-dependent, free surface,
shallow ice flows, a primal-dual method (e.g. Becker et al., 2000;
Nocedal and Wright, 2006; Goldberg and Sergienko, 2011) is
advocated to solve the control problem in a “first discretize, then
optimize” approach (Hinze et al., 2009). The forward model
equations are first discretized with finite differences and then
differentiated with respect to the bedrock topography elevation at
each grid point. This has the advantage of providing the exact
gradient of the investigated discrete objective function and a fully
converging optimization process. The amount of coding could be
reduced with the use of automatic differentiation (Heimbach and
Bugnion, 2009; Roth and Ulbrich, 2013), but this is not the focus of
the following considerations.

Hereafter, the three-dimensional, shallow ice model is first
recalled. Then, the related shape optimization algorithm is elabo-
rated. From its most basic expression that only computes the
bedrock topography, a more advanced formulation is proposed
that concurrently infers some model parameters and accounts for
possibly available surface velocities, surface topographies, and
measured bedrock topography profiles. Next, numerical results
are presented, including the application of the method to real-
world data. Finally, general conclusions are drawn.

2. Forward model

A three-dimensional, time-dependent glacier ice volume ΩðtÞ
enclosed in a cavity Λ¼Ω? � ½Z ; Z �, with Ω? ¼ ½0; Lx� � ½0; Ly� (see
Fig. 1), is considered. Henceforth, the time-independent domain
Ω? is termed “glacier map domain.” The ice volume is bounded by
the glacier's bedrock and surface topographies, b and s respec-
tively, which are both functions of the horizontal coordinates x and
y. Glacier isostasy and erosion are neglected, hence only the
surface topography actually changes with time. Accordingly, the
ice thickness is defined by H¼ s�b. At initial time ti, the surface

topography is given and denoted by si. The forward model's
purpose is to compute the surface topography at final time tf.
The final surface topography is denoted by sf ¼ bþHjt ¼ tf .

Ice is a non-Newtonian, incompressible fluid of extremely large
viscosity compared to typically encountered fluids. For example, it
is about 1016 times more viscous than temperate water. Such a
high viscosity makes ice move very slowly, of the order of
magnitude of 100 m per year (m a�1 in this paper) in Swiss Alps
glaciers. In this paper, ice dynamics is assumed to be governed by
the three-dimensional shallow ice approximation of flow (Hutter,
1983; Morland, 1984), which is the zero-th order approximation of
the Stokes ice flow (Meur et al., 2004; Gudmundsson, 1999;
Zwinger et al., 2007). Ice rheology is characterized by Glen's flow
law (Glen, 1958) and the glacier's surrounding climate is encoded
in the so-called surface mass-balance function B, a representation
of which is given on Fig. 1. Basically, two regions of the glacier's
surface are distinguished where snow accumulates or ice melts,
delimited by the so-called equilibrium line altitude (ELA).

2.1. Continuous equations

In the shallow ice approximation, the flow regime is essentially
a simple, bed-parallel shear. Consequently, the ice velocity com-
ponents can be expressed as the following analytical functions of
the ice thickness H and the glacier's surface topography s¼ bþH
(Greve and Blatter, 2009):

uxðx; y; zÞ ¼ � Γsðx; yÞHnðx; yÞþnþ2
nþ1

ΓðHnþ1ðx; yÞ�ðsðx; yÞ�zÞnþ1Þ
� �

�J∇sðx; yÞJn�1∂s
∂x
ðx; yÞ ð1Þ
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� �

�J∇sðx; yÞJn�1∂s
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uzðx; y; zÞ ¼ �
Z z

b

∂ux

∂x
ðx; y; zÞþ∂uy
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ðx; y; zÞ

� �
dz; ð3Þ

where

Γ ¼ 2
AðρgÞn
nþ2

and Γs ¼ ðCρgÞn½zsl�b�þ ð4Þ

are diffusion coefficients, A is the rate factor, ρ the ice density, g
the acceleration due to gravitation, nZ1 Glen's flow law exponent
(Glen, 1958), C a positive real constant, zsl the altitude below which
sliding occurs, and ½zsl�b�þ the positive part of zsl�b, i.e.

½zsl�b�þ ¼ ðzsl�bÞϑðzsl�bÞ; ð5Þ
where ϑ is the Heaviside function

ϑðxÞ ¼ 1; if x40
0 otherwise:

�
ð6Þ

Fig. 1. Left: Ice extent in the (x, y)-plane of Silvretta glacier, Swiss Alps. The gray levels represent ice thickness distribution (with colorbar given in meters). The map domain
Ω? consists in the whole rectangle ½0; Lx� � ½0; Ly�. Right: glacier profile along a flow line. Ice is represented in blue, rock (or lithosphere) in brown, and air in white. The
bedrock topography b constitutes the ice – lithosphere interface, while the surface topography s the ice – air interface. The ice domain is depicted in blue. The surface mass-
balance B is also illustrated. Above the equilibrium line altitude (ELA), snow accumulates (B40), while ice melts below it (Bo0). (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this article.)
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