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a b s t r a c t

The problem of groundwater flow in an unconfined aquifer, formulated as a free-surface problem, is
solved numerically through a new approach by employing the arbitrary Lagrangian–Eulerian (ALE)
method. The domain of interest is three dimensional or a two dimensional vertical cross-section of a
phreatic zone of an aquifer, where the groundwater table is the upper boundary that is allowed to move.
The ALE method allows capturing the location of the free-surface by transforming the moving domain to
a fixed reference domain through arbitrary forced boundary conditions. The results of the verification
runs of this new approach agree well with the known analytical solutions for aquifer characterization
tests. Beside the comprehensive and accurate evaluation of the groundwater flow in the tested cases, the
approach is also suitable for modeling complex situations. The implementation of our method for
selected cases is illustrated by means of practically relevant examples.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The characterization of subsurface flow in unconfined aquifers
is a challenging task, given the difficulty of identifying the precise
groundwater table (free-surface) positions (Castro-Orgaz and
Giráldez, 2012). Analytical solutions can be obtained only when
simplifying assumptions, such as Dupuit approximation, are intro-
duced. It assumes (1) that the streamlines are horizontal for small
inclinations of the line of seepage and (2) that the hydraulic
gradient does not depend on depth and thus equals the slope of
the free surface (see also Harr, 1962; Strack, 1989). Steady state
unconfined flow and flow toward a well were described by Dupuit
(1863) under these assumptions. Subsequently, analytical solu-
tions were derived for unsteady unconfined flow (i.e., Boussinesq,
1904) and also for specific applications, such as evaluation of a
pumping test (i.e., Neuman, 1972). However, all these analytical
solutions assume a fixed water table condition even close to the
pumping well, where a large drawdown is usually observed
(Mishra and Kuhlman, 2013). The groundwater flow here is more
complex and, therefore, the vertical flow cannot be neglected for
many relevant applications (Bevan et al., 2005; Bunn et al., 2011;
Dagan et al., 2009; Mishra and Kuhlman, 2013). Moreover, the
inaccuracy of Dupuit's assumptions was demonstrated by Dagan
et al. (2009), Desbarats and Bachu (1994), and Tartakovsky et al.
(2000).

Another exact solution for two-dimensional steady flow is given
by the so-called hodograph method, which depends on finding
conformal mappings of the flow region in the physical plane (i.e.,
Bakker, 1997; Bear, 1972). However, the method also fails to yield an
analytical solution, when the geometry of the boundaries becomes
complicated (Bear, 1972). Consequently, the main limitation of
analytical methods is that they are only available for relatively
simple problems and are not flexible to describe complex applica-
tion problems in detail (Bear and Verruijt, 1987).

Numerical methods, which have been developed since the
1960s (Fayers and Sheldon, 1962; Freeze and Witherspoon, 1966;
Remson et al., 1965), have the advantage that they are applicable
for more general situations when compared with analytical
methods. In principle, two conceptual approaches are used: (1)
the partially saturated or unsaturated–saturated flow approach,
and (2) the fully saturated or water table/free-surface flow
approach. On the one hand, the first approach considers the entire
flow domain and solves the Richards equation above the water
table and the groundwater flow equation at the saturated parts of
an aquifer. The second approach, on the other hand, considers only
the saturated parts of an aquifer and solves a free-surface problem.
Models following the first approach are able to provide a more
holistic and rigorous analysis of flow processes. However, the
solution is usually hampered due to the difficulties of obtaining
site-specific data for the unsaturated zone and due to the compu-
tational complications (Feddes et al., 2004; Knupp, 1996).

In view of these difficulties, the majority of groundwater
models use the second approach, which takes the groundwater
table as the upper moving boundary of the saturated zone and
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relocates its position iteratively during the computation. One of
the most common methods is the one employed in MODFLOW
(Harbaugh et al., 2000; McDonald and Harbaugh, 1988). It solves
either the confined or the unconfined groundwater flow equation
depending on whether the grid is saturated or contains the water
table. Limitations associated with this method, i.e., dry cells,
numerical instability, and numerical errors, have been discussed
in Banta (2006), Harbaugh et al. (2000), Keating and Zyvoloski
(2009), Naff et al. (2003), and Zyvoloski and Vesselinov (2006).
Another idea is to solve the free-surface problemwith the location
of the groundwater table as an additional unknown and adjust the
mesh accordingly. Following this idea, Diersch (2009) introduced a
so-called BASD (Best-Adaptation-to-Stratigraphic Data) method to
trace the location of the free-surface with the software FEFLOW.
However, this method requires a 3D model.

The main objective of this study is to provide a comprehensive
simulation method that is able to capture the groundwater table
position of an unconfined aquifer without having the above
mentioned restrictions. In this paper, we follow the second
conceptual approach and solve the free-surface problem only for
steady state. The novel treatment of the free-surface is implemen-
ted making use of a generic mathematical algorithm, the arbitrary
Lagrangian–Eulerian (ALE) method, in the flow simulation.

This paper is structured as follows. After reviewing the govern-
ing equations for groundwater flow in unconfined aquifer, the ALE
method as well as its application in solving the free-surface
problem is intensively discussed. This new method is tested by
comparing the simulation results with the analytical solutions
derived for classical cases. Furthermore, the advantages of this
simulation method are presented through the relevant application
cases. Finally, we summarize the paper and present the conclusions.

2. Governing equations

The governing equation that describes the flow of groundwater
in saturated porous media is developed from the fundamental
principle of mass conservation (continuity equation) and Darcy's
Law. A detailed derivation of the governing equations is provided
by Bear (1972) and Bear and Verruijt (1987). The governing
equation for transient flow in unconfined aquifers is given as

ðαþφβÞ ∂p
∂t

�q¼∇U
k
μ
∇ðpþρgzÞ ð1Þ

where β, ρ and μ denote the fluid properties compressibility,
density and viscosity, respectively, α and φ represent the porous
medium compressibility and porosity, respectively, q is the
recharge or discharge, k indicates the tensor for aquifer perme-
ability, t is the time, g is the acceleration due to gravity and z

denotes the spatial axis in vertical direction. The unknown variable
of the differential equation is the pressure p.

Eq. (1) can also be stated in terms of hydraulic head h that is
defined as h¼zþp/ρg. For constant ρ results

S
∂h
∂t

�q¼∇UK∇h ð2Þ

where the tensor for hydraulic conductivity K is given by
K¼ kρg=μ, and the storage coefficient or storativity S is presented
by S¼ ρgðαþφβÞ.

At steady state, Eq. (2) can be simplified to

∇UK∇hþq¼ 0 ð3Þ
In the case where q is not considered, Eq. (3) results in Laplace's

equation.

3. The novel numerical approach

3.1. Model domain and groundwater flow equation

In the following examples, we solve the problems for steady state
only. Two conditions need to be fulfilled at the free-surface: (1) zero
pressure and (2) flow of groundwater recharge or discharge across
the interface. Condition (1) is a Dirichlet condition for pressure where
the atmospheric pressure is set to zero. Condition (2) is a Neumann
condition for flow across the surface. In case that q can be neglected
in Eq. (3), it is of usual no-flow type. In the problem formulation, our
strategy is to connect these two conditions by defining the flux
condition for the flow equation and the pressure condition for the
free-surface. To fulfill both conditions, the flow equation and the
free-surface algorithm are coupled.

3.2. Tracing free-surface deformation with the ALE method

The ALE method is a hybrid description which uses a moving
mesh to follow the change of a boundary simultaneously. More
precisely, in this formulation, the coordinate system of the
problem domain moves in a certain prescribed manner, which
allows the computational mesh to follow or to deform together
with the change of a free-surface. For more details about this
algorithm one may refer to the articles by Donea et al. (2004). The
ALE method has already been used for simulating general free-
surface problems (e.g., Duarte et al., 2004; Maury, 1996;
Pohjoranta and Tenno, 2011). To our knowledge, however, it has
not yet been implemented for solving free-surface problems in
groundwater flow simulations.

The basic principle of the ALE method is to superimpose the
arbitrary deformed domain Ωx, or spatial domain, and the

Nomenclature

α porous medium compressibility
β fluid compressibility
μ fluid viscosity
ρ fluid density
φ porosity
Ωx spatial domain
ΩX reference domain
υr ground water flow velocity
d drawdown in the well
g acceleration due to gravity
h hydraulic head
j mass flux

k tensor for aquifer permeability
p pressure
q recharge/discharge
r radial distance from well
t time
z spatial axis in vertical direction
D well screen length
F mesh deformation gradient
K hydraulic conductivity
K tensor for hydraulic conductivity
L length of an aquifer
Q pumping rate
S storage coefficient
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