
Priority-flood: An optimal depression-filling and watershed-labeling
algorithm for digital elevation models

Richard Barnes a,n, Clarence Lehman b, David Mulla c

a Ecology, Evolution, & Behavior, University of Minnesota, USA
b College of Biological Sciences, University of Minnesota, USA
c Soil, Water, and Climate, University of Minnesota, USA

a r t i c l e i n f o

Article history:
Received 5 October 2012
Received in revised form
19 April 2013
Accepted 25 April 2013
Available online 23 May 2013

Keywords:
Pit filling
Terrain analysis
Hydrology
Drainage network
Modeling
GIS

a b s t r a c t

Depressions (or pits) are areas within a digital elevation model that are surrounded by higher terrain,
with no outlet to lower areas. Filling them so they are level, as fluid would fill them if the terrain was
impermeable, is often necessary in preprocessing DEMs. The depression-filling algorithm presented here
– called Priority-Flood – unifies and improves the work of a number of previous authors who have
published similar algorithms. The algorithm operates by flooding DEMs inwards from their edges using a
priority queue to determine the next cell to be flooded. The resultant DEM has no depressions or digital
dams: every cell is guaranteed to drain. The algorithm is optimal for both integer and floating-point data,
working in O(n) and Oðn log2 nÞ time, respectively. It is shown that by using a plain queue to fill
depressions once they have been found, an Oðm log2 mÞ time-complexity can be achieved, where m does
not exceed the number of cells n. This is the lowest time complexity of any known floating-point
depression-filling algorithm. In testing, this improved variation of the algorithm performed up to 37%
faster than the original. Additionally, a parallel version of an older, but widely used, depression-filling
algorithm required six parallel processors to achieve a run-time on par with what the newer algorithm's
improved variation took on a single processor. The Priority-Flood Algorithm is simple to understand and
implement: the included pseudocode is only 20 lines and the included C++ reference implementation is
under a hundred lines. The algorithm can work on irregular meshes as well as 4-, 6-, 8-, and n-connected
grids. It can also be adapted to label watersheds and determine flow directions through either
incremental elevation changes or depression carving. In the case of incremental elevation changes, the
algorithm includes safety checks not present in prior works.

& 2013 Elsevier Ltd. All rights reserved.

1. Background

A digital elevation model (DEM) is a representation of terrain
elevations above some common base level, usually stored as a
rectangular array of floating-point or integer values. DEMs may be
used to estimate a region's hydrologic and geomorphic properties,
including soil moisture, terrain stability, erosive potential, rainfall
retention, and stream power. Many algorithms for extracting these
properties require (1) that every cell within a DEM must have a
defined flow direction and (2) that by following flow directions
from one cell to another, it is always possible to reach the edge of
the DEM. These requirements are confounded by the presence of
depressions and flats within the DEM.

Depressions (also known as pits) are inwardly draining regions
of the DEM which have no outlet. Sometimes representative of
natural terrain, they also result from technical issues in the DEM's
collection and processing, such as from biased terrain reflectance
or conversions from floating-point to integer precision (Nardi
et al., 2008). A depression may be resolved either by breaching
its wall (e.g. Martz and Garbrecht, 1998), thus allowing it to drain
to a nearby area of lower elevation, or by filling it.

DEMs have increased in resolution from thirty-plus meters in the
recent past to the sub-meter resolutions becoming available today.
Increasing resolution has led to increased data sizes: current data
sets are in the order of gigabytes and increasing, with billions of data
points. While computer processing and memory performance have
increased appreciably during this time, legacy equipment and algo-
rithms suited to manipulating smaller DEMs with coarser resolutions
make processing these improved data sources costly, if not impos-
sible. Therefore, improved algorithms are needed.

This paper presents an algorithm to resolve depressions by
unifying and extending the work of several previous authors. Also

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cageo

Computers & Geosciences

0098-3004/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cageo.2013.04.024

n Corresponding author. Tel.: +1 321 222 7637.
E-mail addresses: rbarnes@umn.edu (R. Barnes), lehman@umn.edu (C. Lehman),

mulla003@umn.edu (D. Mulla).

Computers & Geosciences 62 (2014) 117–127

www.sciencedirect.com/science/journal/00983004
www.elsevier.com/locate/cageo
http://dx.doi.org/10.1016/j.cageo.2013.04.024
http://dx.doi.org/10.1016/j.cageo.2013.04.024
http://dx.doi.org/10.1016/j.cageo.2013.04.024
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2013.04.024&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2013.04.024&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2013.04.024&domain=pdf
mailto:rbarnes@umn.edu
mailto:lehman@umn.edu
mailto:mulla003@umn.edu
http://dx.doi.org/10.1016/j.cageo.2013.04.024


presented are variants of this algorithm which can label water-
sheds and determine flow directions.

The general definition of the depression-filling problem was
stated by Planchon and Darboux (2002). Given a DEM Z, its
depression-filled counterpart W is defined by the following
criteria:

1. Each cell of W is greater than or equal to its corresponding cell
in Z.

2. For each cell c of W, there is a path that leads from c to the
boundary by moving downwards by an amount of at least ϵ
between any two cells on the path, where ϵ may be zero. Such a
path is referred to as an ϵ-descending path.

3. W is the lowest surface allowed by properties (1) and (2).

If ϵ¼ 0, then the third criterion is easy to achieve; however, if ϵ≠0,
then special precautions must be taken, as described below.

The algorithm presented here is one of only two time-efficient
algorithms for solving the depression-filling problem. Special
cases of this algorithm have been described many times. These
cases, their relations, and alternative algorithms are
detailed below.

2. Alternative algorithms

Arge et al. (2003) describes a specialized Oðn log2 nÞ procedure
to perform watershed labeling, determine flow directions, and
calculate flow accumulation on massive grids in situations where
I/O must be minimized. Although parts of this procedure share
sufficient similarities with Priority-Flood to be considered related,
the combinations of algorithms used and the way in which they
are specialized place it outside the scope of this paper. It is
expected that the algorithm by Arge will run slower than that
described here due to the greater overhead involved in explicit
data management; however, this efficiency of memory may allow
the algorithm by Arge to run better in situations where memory is
limited.

There is also a widely used algorithm for 8-connected grids by
Planchon and Darboux (2002). The algorithm works by flooding
the entire DEM and then draining the edge cells. The entirety of
the DEM is then repeatedly scanned to find the border of the
drained and undrained regions; undrained cells adjacent to this
border are then drained and increased in elevation by a small
amount. The algorithm terminates when all cells have been
drained.

Planchon and Darboux (2002) present two different imple-
mentations of their algorithm. The first is simple to implement,

but inefficient, running in Oðn1:5Þ time. The second implementa-
tion runs in Oðn1:2Þ time during testing, but is much more complex,
using 48 constants to define an iterative scan from multiple
directions, a recursive upstream search with stack limiting to
prevent overflows, and a quadruply nested loop. The algorithm's
design permits it to run in fixed memory. Unfortunately, the DEMs
which require this are typically so large as to make running the
Planchon–Darboux algorithm onerous.

Fortunately, a fast, simple, and versatile alternative algorithm is
available. Here, it is referred to as the Priority-Flood Algorithm.
Later, it will be shown that this alternative algorithm runs
significantly faster than that by Planchon and Darboux.

3. The Priority-Flood Algorithm

3.1. History

In its most general form, the Priority-Flood Algorithmworks by
inserting the edge cells of a DEM into a priority-queue where they
are ordered by increasing elevation. The cell with the lowest
elevation is popped from the queue and manipulated. Following
this, each neighbor which has not already been considered by the
algorithm is manipulated and then added to the priority queue.
The algorithm continues until the priority queue is empty.

The Priority-Flood Algorithm may be applied to either integer
or floating-point DEMs and is optimal for both; the general
algorithm is also indifferent as to the underlying connectedness
of the DEM and works equally well on 4-, 6-, or 8-connected grids,
as well as meshes. As detailed below, special cases of the Priority-
Flood Algorithm have been independently described and
improved by many authors. Table 1 summarizes the work of these
authors. The following is a historic overview of the Priority-Flood
Algorithm followed by a description of the algorithm, an impor-
tant improvement, and details of some of the algorithm's many
variants.

Ehlschlaeger (1989) was the first to suggest the Priority-Flood
Algorithm, noting that

The most accurate method for determining watershed bound-
aries involves placing a person familiar with the nuances of
contour maps at a drafting table to manually interpret drainage
basins.

He goes on to disparage the use of local 3�3 neighborhoods in
determining flow directions, pointing out that a manual inter-
preter would instead utilize a high-level view of the general flow
of water and the location of drainage basins. His variation of the
algorithm uses insertion sort and so has a sub-optimal average

Table 1
Summary of previous Priority-Flood variants. The table lists claims the authors have made. The (n) symbol indicates that the authors have not made a direct claim, so one has
been inferred from their design choices. All the floating-point variants will also work on integer data, though the specified time complexities are then suboptimal.

Year Authors Operation Data type Connectedness Time complexity

1989 Ehlschlaeger Flow directions, accumulation Integer/floatn 8, Any O(n2)n

1991 Vincent and Soille Watershed labels Integer Gridded, n-dim O(n)
1992 Beucher and Meyer Watershed labels Integer 4, 6, 8 O(n)n

1994 Meyer Watershed labels Integern 8n O(n)n

1994 Soille and Gratin Filling Integer 4, 6, 8 O(n)n

2006 Wang and Liu Filling Floatingn 8n O(n log2 n)
2009 Liu et al. Filling Floatingn 8 Oðn log2 kÞa
2010 Metz et al. Flow directions Floatingn 8n O(n log2 n)n

2011 Metz et al. Flow directions Floatingn “Gridded” O(n log2 n)n

2011 Beucher and Beucher Watershed labels Integer 4, 6, 8 O(n)n

2012 Magalhães et al. Filling, flow directions, accumulation Integer 8n O(n)
2012 Gomes et al. Flow directions, accumulation Integer 8n O(n)

a Liu et al. (2009) claim a O(8n log2 n) time complexity, but implement an O(n log 2 k) algorithm.

R. Barnes et al. / Computers & Geosciences 62 (2014) 117–127118



Download English Version:

https://daneshyari.com/en/article/6922922

Download Persian Version:

https://daneshyari.com/article/6922922

Daneshyari.com

https://daneshyari.com/en/article/6922922
https://daneshyari.com/article/6922922
https://daneshyari.com

