
Accelerating a hydrological uncertainty ensemble model using
graphics processing units (GPUs)

D. Tristram a,n, D. Hughes b, K. Bradshaw a

a Department of Computer Science, Rhodes University, Grahamstown 6139, South Africa
b Institute for Water Research, Rhodes University, Grahamstown 6139, South Africa

a r t i c l e i n f o

Article history:
Received 27 January 2013
Received in revised form
5 July 2013
Accepted 15 July 2013
Available online 12 August 2013

Keywords:
GPGPU
OpenCL
Hydrological modelling

a b s t r a c t

The practical application of hydrological uncertainty models that are designed to generate multiple
ensembles can be severely restricted by the available computer processing power and thus, the time
taken to generate the results. CPU clusters can help in this regard, but are often costly to use continuously
and maintain, causing scientists to look elsewhere for speed improvements. The use of powerful graphics
processing units (GPUs) for application acceleration has become a recent trend, owing to their low cost
per FLOP, and their highly parallel and throughput-oriented architecture, which makes them ideal for
many scientific applications. However, programming these devices efficiently is non-trivial, seemingly
making their use impractical for many researchers. In this study, we investigate whether redesigning the
CPU code of an adapted Pitman rainfall-runoff uncertainty model is necessary to obtain a satisfactory
speedup on GPU devices. A twelvefold speedup over a multithreaded CPU implementation was achieved
by using a modern GPU with minimal changes to the model code. This success leads us to believe that
redesigning code for the GPU is not always necessary to obtain a worthwhile speedup.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The history of the development and practical application of
hydrology, water resources, and other environmental models has
been closely aligned with the development of computer hardware
and software. While there has always been a focus on the scientific
aspects of model improvements (O'Connell, 1991; Beven, 2001),
there have also been constraints on what can be achieved given
the available computing power. In the early days of model
development (1960–1970s), access to mainframe digital compu-
ters was largely restricted to universities or large state agencies,
mainly owing to the associated cost of the hardware. Even those
computers were relatively slow and lacked the memory that we
have become accustomed to in modern computers. Consequently
the developments made within research institutions were not
generally available to practising scientists and engineers. Well into
the 1980s and 1990s, many proposed scientific developments
remained constrained by computing limitations and were still
not generally available for practical use. These developments
included the use of finer time intervals in models (Hughes and
Sami, 1994), increased spatial resolution through fully distributed
models (Beven, 1993; Refsgaard, 1997), automatic parameter

calibration approaches (Madsen, 2000), as well as integrating
models of different types (Argent and Houghton, 2001).

With the increased availability and use of desktop computers
(PCs) through the 1980s, it was possible for environmental models
to become part of the everyday toolbox of scientific and engineer-
ing practitioners. However, it was only around 2005 that it became
practical to run complex, spatially detailed models on PCs. Argu-
ably, there always seems to be a need for greater computing power
in environmental modelling despite the increases in power that
have become available on a regular basis. As one type of model
development becomes achievable through hardware and software
improvements, others are conceived that stretch the limits of the
available technology. The most recent advance in hydrological
modelling is the use of uncertainty approaches (Beven and Binley,
1992; Freer et al., 1996; Vrugt et al., 2003; Pappenberger and
Beven, 2006; Hughes et al., 2010), which involves (in many
different ways) running a model many 1000's of times and
generating ensembles of outputs rather than a single solution. As
with most automatic calibration approaches (Yapo et al., 1998), the
amount of computing time is considerable, such that even using
modern PCs (with conventional software architecture), uncer-
tainty approaches to modelling largely remain part of academic
research and have not found a place in practice.

Computer processors are continuously and reliably getting
faster and more complex. As well as the drive for scientific
advancement, the demand for faster processors can be attributed
to the ever increasing computation requirements of the research,

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cageo

Computers & Geosciences

0098-3004/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cageo.2013.07.011

n Corresponding author. Tel.: +27 46 603 8291; fax: +27 46 636 1915.
E-mail addresses: d.tristram@boost.za.net (D. Tristram),

d.hughes@ru.ac.za (D. Hughes), k.bradshaw@ru.ac.za (K. Bradshaw).

Computers & Geosciences 62 (2014) 178–186

www.sciencedirect.com/science/journal/00983004
www.elsevier.com/locate/cageo
http://dx.doi.org/10.1016/j.cageo.2013.07.011
http://dx.doi.org/10.1016/j.cageo.2013.07.011
http://dx.doi.org/10.1016/j.cageo.2013.07.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2013.07.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2013.07.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2013.07.011&domain=pdf
mailto:d.tristram@boost.za.net
mailto:d.hughes@ru.ac.za
mailto:k.bradshaw@ru.ac.za
http://dx.doi.org/10.1016/j.cageo.2013.07.011


industrial, business, and entertainment sectors. In the past, com-
puter users simply waited for reliable increases in processor
speeds to handle computation problems that were not really
feasible at the time. However, it is believed that single-core
processors have hit the power wall (Meenderinck and Juurlink,
2009), meaning that single-core frequency improvements can no
longer easily be made because of power and heat constraints
(Ross, 2008). CPU manufacturers have thus changed their focus
from single-core processors to multicore processors. The last
generation Pentium 4, released in 2006, was Intel's final flagship
single-core desktop CPU. What followed were CPUs with more
features and more cores, starting with Intel's Core 2 Duo featuring
two cores. Modern desktop CPUs have up to eight cores. The trend
of increasing CPU core counts means that existing software needs
to be redesigned to take advantage of multiple CPU cores. In the
case of uncertainty modelling, additional cores are beneficial since
the computations are parallel in nature, but there is still an
insufficient number of cores on a modern CPU to perform an
uncertainty analysis of a moderately complex model within a
“reasonable” amount of time.

In contrast to modern CPUs, which follow the multiple instruc-
tion, multiple data architecture, graphics processing units (GPUs)
are built as massively parallel processors using the single instruc-
tion, multiple data (SIMD) architecture. Driven primarily by the
computer gaming industry, commodity GPUs have become power-
ful and highly parallel computation devices. In recent years, their
increased programmability has made them attractive for general
purpose computation, and GPU manufacturers have been improv-
ing the ability of GPUs to perform such computations efficiently.
Arguably, a solution to existing efficiency problems in uncertainty
environmental modelling is the use of powerful GPUs as cost-
effective accelerators for problems that map well to a SIMD
architecture. However, efficient GPU programming is non-trivial
(Ryoo et al., 2008; Daga et al., 2011; Sim et al., 2012), which
seemingly restricts the benefits of general-purpose computation
on graphics processing units (GPGPU) to individuals experienced
in the field of GPU programming.

This paper documents a study which explores whether rede-
signing a CPU-based scientific model for efficient execution on
GPUs is strictly necessary to obtain a worthwhile speedup. We
consider a worthwhile speedup as one that increases the conve-
nience of running the model with the desired parameters,
increases work efficiency, and allows the modeller to start think-
ing about other improvements that can be made to extend the
benefits of the model. The hydrological simulation model chosen is
an uncertainty version (Hughes et al., 2010) of the Pitman (Pitman,
1973; Hughes, 2004) rainfall-runoff hydrological model that is
widely used in the southern Africa region for both research and
practical water resources assessments. However, the results of the
study should be applicable to any environmental model with a
similar software structure.

2. Pitman hydrological model

The Pitman model is a conceptual type, monthly time-step,
semi-distributed (sub-catchment) model that includes some 23
parameters that govern the algorithms defining the hydrological
storages and processes such as evapotranspiration, interception,
surface runoff, soil moisture storage, interflow, groundwater
recharge and drainage, and catchment routing. An overview of
the hydrological processes and their relationships for this version
of the model is illustrated in Fig. 1. The full details of the model are
not given here as the study could have used any model of this type.
The conceptual diagram in Fig. 1 and the brief explanation of
the model are merely provided to illustrate the degree of

model complexity. The model is typically run over a period of
40–90 years (480–1080 months) depending on the availability of
input rainfall data. Each component of the model (Fig. 1) consists
of a set of sequential algorithms that generate either output data
or the values of internal state variables that are used in the next
time interval or as input to the next downstream sub-catchment.
Most of the model components operate over four equal steps
within the one-month main time step to avoid excessive changes
in any of the state variables (storages or fluxes) before other
components are updated. This approach is frequently used in
coarse time step models (Hughes, 2004) in recognition of the fact
that, in nature, water balance components operate simultaneously.

The ability of the model to accurately represent the hydro-
logical response of any given catchment is reliant on the correct
specification of the model parameters. Estimation of these para-
meters is always problematic, even if they are calibrated against an
observed stream flow time series. Many of the parameter estima-
tion issues are associated with inter-relationships between model
parameters and the problem of equifinality (Beven, 2006),
whereby similar model outputs can be achieved with different
parameter sets.

The uncertainty version of this model is designed to assist in the
estimation of these parameters and allows the model results for many
different options within the feasible parameter space to be explored
(Hughes et al., 2010). It has the goal of establishing parameter values,
setting parameter uncertainty bounds (Kapangaziwiri et al., 2012), and
exploring parameter inter-dependencies. Parameter inputs to the
model are specified as either means and standard deviations of
normal distribution functions, or minimum and maximum values of
uniform distribution functions.

The Delphi code on which this model is based has evolved from
the first version of the Spatial and Time Series Information
Modelling (SPATSIM) system developed in the early 2000s
(Hughes and Forsyth, 2006), rather than having been meticulously
designed from the perspective of efficient software architecture.
The model is run many times (typically between 5000 and 20,000
times) to generate ensembles of outputs, where each output is
based on independent random samples from the defined para-
meter distributions. Running 10,000 ensembles for a basin with 30
sub-divisions over an 80 year input climate time series involves
repeating the full set of model algorithms some 288�106 times,
not to mention the time taken to exchange data with the SPATSIM
database tables. A second version of the uncertainty model also
allows the precipitation inputs to the model to be considered with
uncertainty and makes use of stochastically generated rainfall
sequences rather than a single fixed time series. Typically, the
model is run with 500 stochastic rainfall sequences (for each
spatial sub-division or catchment within the basin), in which case
the number of parameter samples is limited to 500, giving a total
number of 250,000 ensembles or 72�108 operations of the model
algorithms. Fig. 2 illustrates the software configurations of the
Delphi (SPATSIM) versions of the two models. These configura-
tions were designed for sequential execution, but they can be
parallelised by executing the functions within the ensemble loop
on different threads with different input parameters, as is illu-
strated in Fig. 3.

The complexity of each model run and the design of the
program can result in an undesirable model runtime of several
hours on a modern CPU, even for the 10,000 ensembles (i.e.,
without stochastic rainfall inputs). An application of the stochastic
rainfall version of the model to the Caledon River basin with 31
sub-catchments in southern Africa takes approximately 45 h to
complete. While these model runs would not normally be
repeated many times, as would be the case with a purely manual
parameter search and calibration approach, it is sometimes useful
to run the uncertainty model several times to explore the effects of

D. Tristram et al. / Computers & Geosciences 62 (2014) 178–186 179



Download	English	Version:

https://daneshyari.com/en/article/6922941

Download	Persian	Version:

https://daneshyari.com/article/6922941

Daneshyari.com

https://daneshyari.com/en/article/6922941
https://daneshyari.com/article/6922941
https://daneshyari.com/

