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a b s t r a c t

We present explicit expressions for computing the displacements induced in a homogeneous, linearly
elastic half-space by uniform vertical pressure applied over an arbitrary polygonal region of the
horizontal surface. By suitably applying Gauss theorem and recent results of potential theory we derive
formulas which allow one to evaluate the displacements at an arbitrary point of the half-space solely as a
function of the position vectors of the boundary of the loaded region assumed to be polygonal.
Representative numerical examples referred to geodetically observed elastic displacements of the Earth
surface due to water loads show the effectiveness and the flexibility of the proposed approach. Actually,
it allows for a more realistic evaluation of displacements distribution and to achieve a considerable
simplification in data handling since it is now possible to avoid tiling of complex regions by the simple
load shapes, such as circles or rectangles, for which analytical solutions are currently available in the
literature.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The surface of the Earth exhibits seasonal displacements in
response to annual and interannual changes in atmospheric and
seafloor pressure and, even more importantly, to water loads such
as those associated with shifting masses of snow, ice, surface and
subsurface water (Mangiarotti et al., 2001; Van Dam et al., 2001;
Dong et al., 2002; Elósegui et al., 2003).

The elastic response of the solid Earth surface due to environ-
mental loadings can manifest at global (Blewitt et al., 2001),
regional (Heki, 2001) and local scales (Bevis et al., 2004). Nowa-
days it can be measured with sufficient spatial and temporal
resolution thanks to the rapid growth of geodetic reference net-
works of GNSS.

For instance Davis et al. (2004) used space-based measurements
of gravity change, geodetic measurements from ten GPS stations
and a global elastic model to estimate the annual deformation of
South America.

Bevis et al. (2005) obtained a fairly good fit to the vertical
displacement history at the geodetic GPS station located in the city
of Manaus (Brazil) and showed that the response was dominated
by surface loads with a horizontal scale of approximately 100 km.
The surface displacements were sensitive to the elastic structure of
the crust and the lithospheric mantle but insensitive to that of the
mesosphere and of the lower mantle.

More recently Steckler et al. (2010) analyzed the large surface
load due to the unpounded water in Bangladesh caused by the
discharge of the major rivers during the summer monsoon. In
particular they successfully compared the elastic deformation of
the lithosphere at the annual timescales with that recorded by
continuous GPS stations as a seasonal vertical deflection that can
reach 5–6 cm.

The studies quoted above have proven that, when loads are
applied for time periods of approximatively 1 year or less, inelastic
effect can be ignored in modeling the deformation of the solid
Earth caused by surface loads of global or regional extent.

Furthermore, when considering loads of limited spatial extent,
i.e. those having a small spatial scale compared to the radius of
the Earth, it is quite reasonable to ignore the curvature and the
topography of the Earth and to consider it as an elastic half-space
(Boussinesq, 1885; Love, 1929).

Thus, the elastic half-space model does represent a valuable tool
since it allows one to obtain an analytical solution for non-trivial
loading geometries (Becker and Bevis, 2004) and, at the same time,
it turns out to be extremely efficient from the computational
standpoint.

Moreover, the elastic half-space solution is useful as a limiting
or special case of more sophisticated and more general Earth
models (Mooney et al., 1998) such as those incorporating surface
curvature and radial variation in its elastic structure (Dziewonski
and Anderson, 1981; Farrell, 1972; Guo et al., 2004).

In any case one should keep in mind that the accuracy of the
results obtained by more refined Earth models, such as the spheri-
cally symmetric, non-rotating, elastic isotropic (SNREI) one, can be
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hampered by the need of homogenizing somehow (Guo et al., 2004)
the elastic properties of the ocean layer and of the uppermost crustal
layer so as to comply with the assumptions of the PREM model by
Dziewonski and Anderson (1981).

In addition, the Earth model based on a uniform elastic half-
space is very useful when displacement observations are limited to
a single point and only the vertical component of displacements is
very well resolved, e.g. Bevis et al. (2005). This precludes the
adoption of a multilayered elastic model since properties of the
layers cannot be inferred by the observed response to annual
loading cycles.

On the other hand the radially symmetric PREM model
(Dziewonski and Anderson, 1981) is not accurate in the Earth's
outermost 50 km due to the extreme heterogeneity of the upper-
most mantle and especially the crust. Thus, more refined crustal
models, based on seismic refraction surveys (Mooney et al., 1998),
cannot be adopted since the relevant surveys do not exist in
specific regions.

In this case the only realistic model is the half-space though its
useful properties are countervailed by the necessity of accurately
describing the loading region.

Surface loads on the half-space have been modeled by multiple
discs (Elósegui et al., 2003) in order to take advantage of the
solution contributed by Lamb (1902) and Terazawa (1916); actually,
they extended to the case of circular loaded areas with uniform
pressure, the celebrated solution due to Boussinesq (1885) for a
point load, see Johnson (1985) for a survey account.

In particular Boussinesq expressed displacements and stresses
at any point of the half-space as derivatives of suitable potentials.
Subsequently the stresses within the half-space due to a vertical
uniform pressure acting over a rectangular area were derived by
Love (1929) while the corresponding solution in terms of dis-
placements has appeared only recently (Becker and Bevis, 2004).

The aim of this paper is to further generalize the solution
contributed by Becker and Bevis by providing formulas for
computing the displacements within a homogeneous linearly
elastic half-space due to a uniform vertical pressure applied on
its top over a region of arbitrary polygonal shape.

This allows for a more flexible and accurate description of the
loaded region with respect to the existing formulations in which
nonuniform surface loads are approximated by means of discs
(Elósegui et al., 2003) or rectangles (Becker and Bevis, 2004;
Mojzeš et al., 2012).

The formulas derived in the paper are proven to be analytically
well defined for every point of the half-space and every position of
the loaded region. These properties have been confirmed numeri-
cally by running a home-made MATLABs code, appended to the
paper as supplementary material, for several examples selected
from the literature.

The first example, derived from Elósegui et al. (2003), has been
selected to show that a rough approximation of the loading
conditions, even if associated with a more refined Earth model
with respect to the half-space, can produce unrealistic displace-
ment distributions.

The second example refers to a frequent case in the applica-
tions, see e.g. Steckler et al. (2010), in which the complexity of the
loaded region obliges the analyst to subdivide it into a very fine
mesh of subregions, typically of circular or rectangular shape, for
which analytical solution is currently available in the literature.

Conversely, it is shown that the solution can be achieved much
more easily by superimposing several polygonal loaded regions for
which the same load value, associated with the water level, is
assumed.

The paper is organized as follows. Section 2 briefly recalls the
basic formulas which express the displacements within an elastic,
isotropic half-space as derivatives of suitable potentials extended

to the loaded region. Assuming that such a region has a polygonal
shape, Sections 3 and 4 report the formulas for computing,
respectively, the horizontal and vertical displacements.

All the analytical details have been included in the Appendix,
where the interested reader can find the mathematical justifica-
tion of the derived formulas.

Finally, Section 5 contains the results of some of the numerical
examples, run by the above mentioned MATLABs code, which
have been run in order to validate the proposed approach.

2. Problem definition

Let us consider a homogeneous isotropic half-space and an
orthonormal reference frame ðO; x; y; zÞ with the z-axis directed
downwards; the boundary of the half-space is defined by the
plane z ¼ 0.

Given a constant vertical pressure pz applied on a portion of the
plane z ¼ 0, our aim is to evaluate the displacements induced at
an arbitrary point p¼ ðx; y; zÞt of the half-space.

This problem has been first solved by Boussinesq (1885) for a
point load acting on the boundary of the half-space by expressing
the solution as a function of suitable scalar potentials. Subse-
quently, according to a footnote in the paper by Love (1929), it
has been reformulated by Hertz (1881) in the form addressed
hereafter.

Recently Becker and Bevis (2004) have evaluated the stress
state induced by a vertical pressure over a rectangular region by
combining the formulas derived by Hertz, to express the displace-
ments in a half-space induced by a vertical point load on its
boundary, with those proposed by Love.

Specifically, the solution presented by Becker and Bevis (2004)
is expressed in a form identical to that contributed by Hertz:
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apart from the introduction of the potentials:

UðpÞ ¼
Z
Ω
pzðrÞln ðzþjr�pjÞ dΩ; VðpÞ ¼

Z
Ω

pzðrÞ
jr�pj dΩ ð2Þ

They represent the integrals of Boussinesq's potentials extended to
the loaded area Ω and are expressed in terms of the modulus j � j
of the vector r�p. In turn r¼ ðx′; y′;0Þt represents a generic point
of the plane z ¼ 0 on which the load is applied.

In formula (1) d represents the displacement vector while λ
and μ are the two Lamé constants; they are related to Young's
modulus E and Poisson's ratio ν by the well-known expressions
(Turcotte and Schubert, 1982; Kennet and Bunge, 2008):

λ¼ Eν
ð1þνÞð1�2νÞ; μ¼ E

2ð1þνÞ ð3Þ

To emphasize the fact that the integrals in (2) need to be
carried out for a two-dimensional domain, we denote the 2D
vector by a Greek letter:

ρ¼ ðx�x′; y�y′Þt ð4Þ
so that, for a uniform vertical pressure pz, the potentials U and V
can be equivalently written as follows:
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ � ρþz2

q� �
dΩ; VðpÞ ¼ pz

Z
Ω

dΩffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ � ρþz2

p ð5Þ

M.G. D'Urso, F. Marmo / Computers & Geosciences 61 (2013) 144–151 145



Download	English	Version:

https://daneshyari.com/en/article/6923024

Download	Persian	Version:

https://daneshyari.com/article/6923024

Daneshyari.com

https://daneshyari.com/en/article/6923024
https://daneshyari.com/article/6923024
https://daneshyari.com/

