
An optimized parallel LSQR algorithm for seismic tomography

En-Jui Lee a,n, He Huang b, John M. Dennis c, Po Chen a, Liqiang Wang b

a Department of Geology and Geophysics, University of Wyoming, Dept. 3006, 1000 E University Ave, Laramie, WY 82071, United States
b Department of Computer Science, University of Wyoming, Dept. 3315, 1000 E University Ave, Laramie, WY 82071, United States
c Computational Science Section, Scientific Computing Division, National Center for Atmospheric Research, 1850 Table Mesa Drive Boulder, CO 80303,
United States

a r t i c l e i n f o

Article history:
Received 23 May 2013
Received in revised form
8 August 2013
Accepted 30 August 2013
Available online 12 September 2013

Keywords:
LSQR algorithm
Tomographic inversion
MPI
Computational seismology
Inverse problems
Parallel scientific computing

a b s t r a c t

The LSQR algorithm developed by Paige and Saunders (1982) is considered one of the most efficient and
stable methods for solving large, sparse, and ill-posed linear (or linearized) systems. In seismic
tomography, the LSQR method has been widely used in solving linearized inversion problems. As the
amount of seismic observations increase and tomographic techniques advance, the size of inversion
problems can grow accordingly. Currently, a few parallel LSQR solvers are presented or available for
solving large problems on supercomputers, but the scalabilities are generally weak because of the
significant communication cost among processors. In this paper, we present the details of our
optimizations on the LSQR code for, but not limited to, seismic tomographic inversions. The optimiza-
tions we have implemented to our LSQR code include: reordering the damping matrix to reduce its band-
width for simplifying the communication pattern and reducing the amount of communication during
calculations; adopting sparse matrix storage formats for efficiently storing and partitioning matrices;
using the MPI I/O functions to parallelize the date reading and result writing processes; providing
different data partition strategies for efficiently using computational resources. A large seismic
tomographic inversion problem, the full-3D waveform tomography for Southern California, is used to
explain the details of our optimizations and examine the performance on Yellowstone supercomputer at
the NCAR-Wyoming Supercomputing Center (NWSC). The results showed that the required wall time of
our code for the same inversion problem is much less than that of the LSQR solver from the PETSc library
(Balay et al., 1997).

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Seismic waves generated by natural or manmade sources and
recorded by seismometers carry important information about the
physical properties of the subsurface earth structures through
which they propagate. Seismic tomography is an imaging techni-
que that assimilates ground-motion observations collected using
seismometers to improve structural models of the Earth's interior
and it has been one of most effective means for imaging the
Earth's interior in the past few decades.

The seismic tomography problem is often formulated as an
optimization problem, in which we search for an optimal earth
structure model that minimizes an objective function defined in
terms of certain misfit measurements that quantify the discre-
pancies between the observed wave-fields and the corresponding
synthetic wave-fields predicted using a reference earth structure
model. A typical objective function that is often employed in

practice has the quadratic form

χ2ðmÞ ¼ dTC�1
d dþðm� ~mÞTC�1

m ðm� ~mÞ; ð1Þ
where d is a vector composed of individual misfit measurements,
m is a vector composed of model parameters, ~m is a vector of the
reference structure model, Cm is the a priori model covariance
matrix and Cd is the data covariance matrix. This type of objective
functions arises in the context of statistical inference based on a
Gaussian-Bayesian point of view (e.g., Tarantola, 2005). For an
individual misfit measurement dsrin, which is the n-th misfit
measurement on the i-th component seismogram generated by
source s and recorded at receiver r, the data sensitivity kernel
Km
dsrin
ð ~m; xÞ is the functional (Fréchet) derivative of this misfit

measurement with respect to the model parameters around the
reference model (Backus and Gilbert, 1968), i.e.,

δdsrin ¼
Z

dVðxÞKm
dsrin
ð ~m; xÞδmðxÞ: ð2Þ

If discretized over space x, the data sensitivity kernel Km
dsrin
ð ~m; xÞ

becomes a vector and the spatial integral in Eq. (2) can be
expressed as an inner product. The Jacobian matrix Ak is the
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matrix with each row given by the discretized data sensitivity
kernel for each individual misfit measurement. For nonlinear
least-squares problems such as the one defined in Eq. (1), the
Gauss–Newton algorithm is often an effective optimization algo-
rithm because the Jacobian matrix, which only involves the first-
order Fréchet derivative of every misfit measurement, can provide
not only the gradient of the objective function but also an
approximation of its Hessian. The exact Hessian of the objective
function in Eq. (1) is given by

H¼AT
kC

�1
d AkþC�1

m þð∇mAkÞTC�1
d d; ð3Þ

which involves the derivative of the Jacobian matrix, therefore
second-order derivatives of individual misfits. However, when d is
small and/or the individual misfits are approximately linear with
respect to model parameters (i.e., ∇mAk is small), the last term in
Eq. (3) can be neglected. Under such an approximation, if we
expand the objective function in Taylor series around the reference
model ~m, truncate the expansion to second-order and then set the
derivative of the truncated series with respect to m to zero, we
arrive at the Gauss–Newton normal equation

ðAT
kC

�1
d AkþC�1

m Þðm� ~mÞ ¼ AT
kC

�1
d d: ð4Þ

In practice, we do not need to explicitly form this equation, because
its solution can be computed by solving the linear system

C�1=2
d Ak

C�1=2
m

2
4

3
5ðm� ~mÞ ¼ C�1=2

d d
0

" #
ð5Þ

via a relaxation method. The LSQR algorithm of Paige and Saunders
(1982) is one of the most popular solvers used in seismic tomo-
graphy due to its efficiency and stability in solving large, sparse and
ill-conditioned linear systems (e.g., Nolet, 1985; Nolet, 1993). Once
Eq. (5) is solved, the structure model can be updated and the
updated model can become the new reference model for the next
iteration. This process can then be iterated until convergence.

In conventional ray-theoretic travel-time tomography, an indi-
vidual misfit measurement is determined by the difference
between the observed travel-time of a specific seismic phase and
the corresponding model-predicted travel-time computed using a
ray-tracing algorithm in the reference structure model and the
data sensitivity kernel is determined by the ray-path connecting
the source and the receiver for the selected seismic phase (e.g.,
Červený, 2005). The “finite-frequency” effect of wave-propagation
can be accounted for by combining the Born approximation with
the paraxial ray theory and the corresponding data sensitivity
kernel exhibits the counterintuitive “banana-doughnut” phenom-
ena, i.e., the sensitivity of the cross-correlation delay-time is non-
zero within a tube surrounding the ray path (i.e., the Fresnel zone)
but is zero on the ray path (Marquering et al., 1999; Dahlen et al.,
2000; Hung et al., 2000; Zhao et al., 2000). Recent advances in
parallel computing technology and numerical methods (e.g., Olsen,
1994; Graves, 1996; Bao et al., 1998; Komatitsch and Vilotte, 1998;
Komatitsch et al., 2004; Dumbser et al., 2007) have significantly
reduced the computational cost for solving acoustic and (visco)
elastic seismic wave equations in realistic 3D earth structure
models, which has opened up the possibilities for wave-
equation-based (i.e., “full-wave”) seismic tomography techniques.
The adjoint-state method, which was adopted to solve seismic
imaging problems in Bamberger et al. (1977, 1982) and later
extended to 2D acoustic (Pratt and Worthington, 1990; Pratt
et al., 1998) and 3D acoustic and elastic full-wave inversions
(e.g., Tarantola, 1984; 1988; Tromp et al., 2004), is numerically
efficient for computing the gradient of the objective function, as it

only requires one forward and one adjoint wave-propagation
simulation per seismic source. For a dataset with Ns seismic
sources, the total number of wave-propagation simulations (for-
ward and adjoint) needed for constructing the gradient is 2Ns.
Once the gradient of the objective function is available, gradient-
based optimization algorithms such as the steepest-descent and
the conjugate-gradient methods can be adopted to minimize the
objective function. However the adjoint method is not efficient for
constructing the Jacobian matrix, as it will need one forward and
one adjoint simulation to compute the data sensitivity kernel
for each misfit measurement. For realistic seismic tomography
problems involving a large number of misfit measurements,
the number of simulations and the computational cost needed to
construct the Jacobian matrix using the adjoint method is
prohibitive.

The scattering-integral (SI) method (Zhao et al., 2005), which is
physically equivalent to, but computationally different from the
adjoint method (Chen et al., 2007a), provides a computationally
viable approach for constructing the Jacobian matrix. Consider the
data sensitivity kernel of the misfit measurement dsrin with respect
to the elastic moduli cjklmðxÞ, after applying the reciprocity prin-
ciple (Aki and Richards, 2002), the data sensitivity kernel can be
expressed as (Chen et al., 2007a)

Kcjklm
dsrin

ðxÞ ¼�
Z

dt
Z

dτ JsrinðtÞ∂kGjiðx; t�τ; xrÞ∂lus
mðx; τÞ; ð6Þ

where ∂k represents the partial derivative with respect to xk, J
sr
inðtÞ

is the functional derivative of the misfit measurement with respect
to the waveform, i.e., δdsrin ¼

R
JsrinðtÞδus

i ðxr ; tÞ dt, Gjiðx; t; xrÞ is the
Green's tensor for a unit impulsive force acting at the receiver
location xr and is named the “receiver Green's tensor” (RGT),
us
mðx; tÞ is the m-th component forward wave-field generated by

the seismic source s. The SI method is based on the observation
that the RGTs do not depend on the sources. If we compute and
stored them on disk, they can be re-used for constructing the data
sensitivity kernels of different seismic sources. The computational
cost for carrying out the temporal convolution and integration in
Eq. (6) is almost negligible compared to the cost for carrying out a
wave-propagation simulation. For a dataset with Nr receivers, the
total number of simulations needed to construct the Jacobian
matrix using the SI method is Nsþ3Nr for 3D elastic problems.
For acoustic and/or 2D problems, the number of simulation is even
less. For realistic seismic tomography applications the disk space
needed for storing the RGTs can be substantial but still manage-
able by adopting efficient data compression algorithms.

The SI method has been successfully applied to image the crustal
structure of the Los Angeles Basin area in Chen et al. (2007b) and
the tomographic inversion is currently being extended to Southern
California. The linear system in Eq. (5) is more than 450 times larger
in the Southern California inversion than that in the Los Angeles
Basin inversion. In Chen et al. (2007b), the LSQR code used for
solving Eq. (5) came from the PETSC library (Balay et al., 1997). But
when we try to apply the same code to our inversion in Southern
California, it does not provide satisfactory performance. In this
paper we discuss our optimization of the parallel LSQR algorithm
and demonstrate the performance of our code using one Gauss–
Newton iteration from our Southern California tomographic inver-
sion. In our Southern California inversion, we have completed 5
Gauss-Newton iterations so far. In each iteration, the updated model
from the previous iteration is used as our reference model for the
current iteration and the Jacobian matrix is re-computed for the
current iteration using the SI method. Our optimized LSQR code is
used to solve the Gauss-Newton normal equation in every iteration.
The full inversion process based on both the adjoint and the SI
method will be documented in a separate publication.
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