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a b s t r a c t

Analysis of geophysical borehole data can often be hampered by too much information and noise in the
trace leading to subjective interpretation of layer boundaries. Wavelet analysis of borehole data has
provided an effective way of mitigating noise and delineating relevant boundaries. We extend wavelet
analysis by providing a complete set of code and functions that will objectively block a geophysical trace
based on a derivative operator algorithm that searches for inflection points in the bore log. Layer
boundaries detected from the operator output are traced back to a zero-width operator so that
boundaries are consistently and objectively detected. Layers are then classified based on importance
and analysis is completed by selecting either total number of layers, a portion of the total number of
layers, selection of minimum layer thickness, or layers detected by a specified minimum operator width.
We demonstrate the effectiveness of the layer blocking technique by applying it to a case study for
alluvial aquifer detection in the Gascoyne River area of Western Australia.

Crown Copyright & 2013 Published by Elsevier Ltd. All rights reserved.

1. Introduction

When examining information from boreholes, we often com-
bine the use of drillers' lithological with geophysical borehole logs
to determine relevant properties of the earth. However, the
lithology record from the drilling process may be in error. This
can be due to the type of drilling process used, such as a mud rig in
a clay-rich environment, whereby discrimination of earth materi-
als from drilling mud may be difficult or impossible, or it may be
because drilling samples are only taken every metre to half-metre;
and thereby information is lost during the drilling process. By
comparison, geophysical logs are taken after the borehole has been
drilled (and developed, in the case of water bores) and the tools
are lowered to record information continuously. However, noise in
the measurement of geophysical properties can be an issue, and
the natural identification of layer boundaries may therefore be
difficult or problematic. In addition, the actual resolution ability of
the borehole device may be limited, so that layers from geophy-
sical logs are smeared out. This can often be the case for natural
gamma logging, which takes continuous recording over time
intervals while being lowered; but it can also affect apparent
conductivity logging. The separation of the transmitting coil from

the receiving coil limits the minimum layer resolution in the well-
log (e.g., Kaufman and Dashevsky, 2003).

Recent advances on the natural identification of borehole layers
and boundaries have been made with the use of wavelet trans-
forms of geophysical well-logs (see for example Cooper and
Cowan, 2009; Webb et al., 2008; Choudhury et al., 2007; Cowan
and Cooper, 2003). Wavelet analysis transforms the profile data
into depth and transform information which, in the case of
geophysical logs, shows the power of the log signal as a function
of the depth under ground. The efforts of these authors, which rely
mostly upon the Morlet and Mexican Hat wavelets, have shown
that wavelet analysis is an effective tool for de-noising and
blocking geophysical log data. Cowan and Cooper (2003) use Haar
and Morlet wavelets to examine magnetic susceptibility data in
Western Australia. The Haar wavelets effectively limited high-
frequency noise from the downhole logs, and showed clear images
of the long-wavelength variations in the subsurface. Continuous
wavelet transforms were also applied to density and susceptibility
data in drillcore measurement by Webb et al. (2008), revealing
statistical patterns in the density data that were previously
undiscovered. The work of Cowan and Cooper (2003) was
expanded upon several years later, where Cooper and Cowan
(2009) use the continuous transform Mexican Hat Wavelet to
analyse magnetic susceptibility log data in Australia for banded-
iron formations in Hammersley Basin. They compare wavelet
analysis to median and mean filtering with favourable results,
and show that the Mexican Hat continuous wavelet transform is as
effective as, or more effective than, using a mean or median filter
for automated layer selection of data.

In this paper, we further develop the concept of Cooper and
Cowan (2009) by applying a derivative-type analysis based on a

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/cageo

Computers & Geosciences

0098-3004/$ - see front matter Crown Copyright & 2013 Published by Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cageo.2013.06.015

☆This is an open-access article distributed under the terms of the Creative
Commons Attribution-NonCommercial-No Derivative Works License, which per-
mits non-commercial use, distribution, and reproduction in any medium, provided
the original author and source are credited.

n Corresponding author. Tel.: +61 431458537.
E-mail addresses: aaron.davis@csiro.au (A.C. Davis),

nbc@geo.au.dk (N.B. Christensen).

Computers & Geosciences 60 (2013) 34–40

www.sciencedirect.com/science/journal/00983004
www.elsevier.com/locate/cageo
http://dx.doi.org/10.1016/j.cageo.2013.06.015
http://dx.doi.org/10.1016/j.cageo.2013.06.015
http://dx.doi.org/10.1016/j.cageo.2013.06.015
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cageo.2013.06.015&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cageo.2013.06.015&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cageo.2013.06.015&domain=pdf
mailto:aaron.davis@csiro.au
mailto:nbc@geo.au.dk
http://dx.doi.org/10.1016/j.cageo.2013.06.015


piecewise-linear approximation to the Mexican Hat wavelet trans-
form. Instead of focussing on the frequency and signal content of
the geophysical log, we examine the other primary purpose of
wavelets of this shape: derivative analysis. Our wavelet, which acts
more as an operator, effectively takes the second derivative of any
geophysical bore log. Layer boundaries are objectively detected by
looking for the inflection points in the log, and boundaries of
layers in the transformed space are then traced back to zero-width
derivative operators. We briefly explain how the derivative opera-
tor transforms the borehole trace, and how the transformed data is
analysed for blocking. We provide tools for examining the blocked
trace, and hierarchically classify layers based on layer-importance,
proportion of total layers, and layer thickness. We show that the
derivative analysis can be used for a variety of post-processing
analysis techniques, including forward modelling for other com-
plementary geophysical measurements and improving lithology
layers from drilling records. We present a freely available, com-
plete, working and annotated Matlab code package for the geop-
hysical community under the Creative Commons Attributions
CC-BY licence 3.0 (Creative Commons, 2013).

2. Method

In this section, we describe our method of obtaining a modified
vector of the geophysical borehole trace in order to perform the
derivative analysis. Here, we also describe how we construct the
matrix of differential operators that are used to find inflection
points in the data that represent layers or boundaries in the
geophysical data. The geophysical borehole log is convolved with
successively wider and wider differential operators in order to find
inflection points in the data. Since convolution in the real domain
is equivalent to multiplication in the Fourier domain, we convert
all data to Fourier domain data for the calculations, and back to
real space for the analysis.

2.1. Algorithm for calculating derivatives

We begin with a borehole trace of geophysical data that is
sampled in discrete steps of increasing depth Δdt . The geophysical
trace data is N points long, where N is an even number, and we
denote an individual sample of the total trace x at depth i as xi
occurring at depth di. For the derivative analysis, an extended
ensemble of the data is created by padding the original data and
subtracting its mean: xe ¼ ½0;�ðx′�xÞ;0; x�x�, where x′ is the
reverse order of the borehole trace data. The new trace xe, which
is of length 2N þ 2, is then transformed to the Fourier domain
using the discrete Fourier transform F ðxeÞ.

Our method of layer analysis is similar to the use of the wavelet
blocking technique in geophysical borehole logs (Cooper and
Cowan, 2009; Cowan and Cooper, 2003). Instead of the ‘Mexican
Hat’ continuous wavelet transform, we use a simple approxima-
tion that is linearly piecewise-continuous. For our process, we use
even-numbered interpolations of the primary wavelet
wp ¼ ½�1=2;1;�1=2� which is, in its simplest interpretation, a
double derivative operator. Our first differential operator, w1, is
formed as follows: beginning with a minimum operator of eight
taps, we interpolate vector wp with eight evenly spaced samples,
and pad the left and right sides of the operator w1 with 0 s so that
it is also of length 2N þ 2. Each successive vector is constructed in
the same way, stepping up by four taps at each new operator, until
the final operator vector is 2N þ 2 points long, and there are at
most two zeros in the differential operator trace. For every
operator, we normalise the area under the positive section of the
curve by dividing by the total number of points that create the
wavelet. As an example, Fig. 1 shows 10 differential operators used

in the blocking case study from the Gascoyne River (Section 3).
The width of the positive section of each operator (i.e., the section
of the operator window that is greater than 0 in the vector) is
2N=3 points long, and the total number of operators is M ¼ ⌊x⌋�1.
We define the width of the operator as the total number of points
in the positive section of the operator window multiplied by the
depth-step value in the geophysical bore-log. The resulting opera-
tor matrix W , which is ðð2N þ 2Þ �MÞ in size, also gets trans-
formed into the Fourier domain, resulting in F ðWÞ.

As stated earlier, each application of the derivative transform
operates on the geophysical borehole trace to pick out inflection
points in the data. Since the operators act on the data as a filter, we
can easily express the calculation of the double derivative as a
convolution of data. This is most easily calculated in the Fourier
domain; however, transformation of data to the Fourier domain
implies that our data is cyclic in nature: something that is clearly
not true of the original trace. It is for this reason that we have
modified the borehole trace to x′, which includes a mean-sub-
tracted, reverse trace of the borehole data coupled to a mean-
subtracted forward trace of the data (with buffers of 0 between
each sub-trace). The addition of the reversed discrete data ensures
that the differential operators will discover boundary inflections at
the beginning and end of the original geophysical trace, and that
the circular convolution of the application of the differential
operators in the Fourier space will not overlap layers near the
beginning and ending of the original data set. The differentiation
product matrix, which is the result of the application of each
differential operator vector in F ðWÞ to the extended borehole
trace F ðx′Þ, is then transformed back to real space and concate-
nated back to an ðN �MÞ matrix which contains the derivative
information for the geophysical borehole trace. This process is
explained in the procedure below, where the symbol ○ represents
the Hadamard entry-wise product:

1. From x, construct xe and replicate it into matrix Xe of size
ð2N þ 2�MÞ.

2. Create the ð2N þ 2�MÞ derivative matrix W .
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Fig. 1. Selection of 10 of the 224 differential operators used in the Gascoyne River
case study (Section 3). Range is from w1 (light blue) to w224 (grey). (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this article.)
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