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a b s t r a c t

Compared to traditional traveltime inversion methods, no traveltime picking, high-frequency assumption
or ray tracing is necessary in wave-equation traveltime inversion (WT). Another merit of WT is that it is
insensitive to the starting model. Although WT offers less detailed parts of velocity model than the full
waveform inversion (FWI), it can provide a good initial velocity model for FWI. In this paper, the steepest
descent, conjugate gradient and limited-memory BFGS (L-BFGS) optimization methods are used in the
implementation of acoustic WT. We use synthetic crosswell data for testing and the numerical results
show that L-BFGS has a faster rate of convergence and offers a reconstructed velocity model with better
resolution compared to the other two gradient methods.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The various seismic velocity inversion methods have two major
categories, traveltime inversion (Dines and Lytle, 1979; Bishop
et al., 1985; Ivansson, 1985; Paulsson et al., 1985; Pyun et al., 2005)
and full waveform inversion (FWI) (Tarantola, 1986; Mora, 1987;
Crase et al., 1992; Shin and Cha, 2008). Both methods have
complementary strong and weak points (Zhou et al., 1995).

Traditional traveltime inversion can fail when the velocity
variations have nearly the same wavelength as does the source
wavelet. On the other side, the traveltime misfit function to be
minimized can be quasi-linear with respect to the variation
between the presumed and actual velocity model. High quality
inversion results can be attained even if the starting model is far
from the actual model (Luo and Schuster, 1991). Full waveform
inversion can reconstruct a highly resolved velocity model, but the
problem is that its misfit function can be highly nonlinear with
respect to the velocity model (Gauthier et al., 1986; Luo and
Schuster, 1991). A gradient method will tend to get stuck in local
minima if the starting model is quite different from the actual
model (Zhou et al., 1995). Wave-equation traveltime inversion
(WT) minimizes traveltime residuals using traveltimes and deri-
vatives computed from solutions to the wave equation (Luo and
Schuster, 1991). WT is quickly convergent for starting model far
from the actual model and the reconstructed velocity model has a
relatively high resolution.

Seismic inversion is essentially an optimization problem thus
the choice of numerical algorithm is important. To solve problems,
researchers usually choose iterative methods that generate a
sequence of improving approximate solutions. The methods differ
according to whether they evaluate Hessians, gradients, or only
functions value. For the 2nd derivatives optimizer, such as New-
ton's method, the number of function calls in each iteration is in
the order of N2, but for a gradient optimizer it is only N. However,
gradient optimizers usually need more iterations than Newton's
algorithm. In large scale problems, the computational complexity
may be excessively high. Quasi-Newton methods are more often
used. In the implementation of WT, we use two typical gradient
methods, the steepest descent and conjugate gradient, and one
quasi-Newton method (L-BFGS).

Waveform inversion has emerged as a key tool in petroleum
and natural gas exploration. However, waveform inversion tends
to get stuck in local minima and requires sufficient low-frequency
components in data. WT can recover long-wavelength structures
of the velocity model and offer a high quality starting model for
full waveform inversion (FWI). Successful applications of WT can
be achieved to the field data which contains unreliable compo-
nents less than 5 Hz. Many researchers has presented that quasi-
Newton method outperforms the classic gradient methods in FWI
(Sheen et al., 2006; Brossier et al., 2009; Virieux and Operto,
2009). As WT has become a hot spot for its merits in geophysical
prospecting, a significant question to be settled is whether quasi-
Newton algorithm still provides higher convergence rate and
resolving power over the gradient methods.

This paper first presents the theory of WT and the numerical
optimization methods we choose for WT. We then apply WT to 2D
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synthetic crosswell data and compare the results of three meth-
ods. Finally, a conclusion is given.

2. Wave-equation traveltime inversion

Let p(xr,t;xs)obs denotes the observed pressure seismograms
measured at the receiver location xr(s¼1, 2,…, Nr) due to a source
at xs(s¼1, 2,…, Nr). The source is always assumed to be excited at
t¼0. For a given velocity model, p(x,t;xs)cal denotes the calculated
seismogram that honors the 2-D wave equation.

1
c2ðxÞ

∂2pðx; t; xsÞ
∂t2

�ρðxÞ∇ 1
ρðxÞ∇pðx; t; xsÞ

� �
¼ sðt; xÞ; ð1Þ

where ρ(x) is the density, c(x) is the wave velocity and s(t;x) is the
source function.

The forward modeling problem is defined as finding the
pressure field that satisfies Eq. (1) with the given boundary and
initial conditions. The inverse problem is defined as finding the
velocity model which is in accordance with the observed seismo-
grams and minimizes the misfit function (Zhou et al., 1995), the
misfit function is defined as (Luo and Schuster, 1991)

S¼ 1
2
∑
s
∑
r
Δτðxr ; xsÞ2; ð2Þ

where Δτ(xr,xs)¼τobs(xr,xs)�τcal(xr,xs) is the difference between the
observed and calculated first arrival times for a source at xs and a
receiver at xr.

We choose a steepest descent method to minimize traveltime
residual S. To update the velocity model, the steepest descent
method gives

ckþ1ðxÞ ¼ ckðxÞ þ αkγkðxÞ; ð3Þ

where γk(x) is the steepest descent direction, αk is the step length
and x represents any location between the wells, k denotes the kth
iteration.

Taking the Fréchet derivative of S,

γðxÞ ¼� ∂S
∂cðxÞ ¼�∑

s
∑
r

∂ðΔτÞ
∂cðxÞ Δτðxr ; xsÞ ð4Þ

From Eq. (8) in Luo and Schuster (1991)

γðxÞ ¼ 1
c3ðxÞ∑s

Z
dt _pðx; t; xsÞcal _p0ðx; t; xsÞ; ð5Þ

where _p′ðx; t; xsÞ ¼∑
r
gðx;�t; xr ;0Þnδτðxr ; t; xsÞ, the symbol * repre-

sents temporal convolution, _p represents the time derivative of p,
and g(x,�t;xr,0) is the Green's function associated with Eq. (1) for
the velocity field ck(x). Here δτ is the pseudo-traveltime residual
defined by

δτðxr ; t; xsÞ ¼ �2
E
_pðxr ; t þ Δτ; xsÞobsΔτðxr ; xsÞ; ð6Þ

where E is defined as

E¼
Z

dt _pðxr ; t þ Δτ; xsÞobs _pðxr ; t; xsÞcal; ð7Þ

For a single source, the interpretation of Eq. (5) is that the gradient
at x is obtained from the cross-correlation of the forward-modeled
field _pðx; t; xsÞcal with the back-projected field _p′ðx; t; xsÞ. We weight
the observed seismograms at the xr receiver with its associated
traveltime residual Δτ(xr,xs) and normalization value E to get the
pseudo-traveltime residual δτ(xr,t;xs), then back-project it to find
the _p′ðx; t; xsÞ (Zhou et al., 1995).

3. Numerical optimization methods

We try to minimize the traveltime residual function

S¼ 1
2
∑
s
∑
r
Δτðxr ; xsÞ2 ð8Þ

An iterative method uses an initial assumed model to generate
successive approximations to a solution. Let αk denotes the step

Fig. 1. A fault model with a dipping layer, the blue dots along the left well
represent the sources and the red dots along the right well represent the receivers
(not all the sources and receivers are marked). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 2. The starting model, it is a constant-velocity model.
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