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a b s t r a c t

We present a new method for computing the local fractal dimension in remote sensing imagery. It is
based on a novel way of estimating the quadratic self correlation (or 2D Hurst coefficient) of the pixel
values. The method is thoroughly tested with a set of synthetic images an also with remote sensing
imagery to assess the usefulness of the techniques for unsupervised image segmentation. We make a
comparison with other estimators of the local fractal dimension. Quadratic self-correlation methods
provide more accurate results with synthetic images, and also produce more robust and fit segmenta-
tions in remote sensing imagery. Even with very small computation windows, the methods prove to be
able to detect borders and details precisely.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Most spatial patterns of nature are so irregular and fragmented
that Euclidean geometry fails to provide tools for the analysis of
their form and shape. In contrast, fractal geometry is a useful
formalism for describing and characterizing complex objects,
specifically those arising in natural phenomena (Scholz and
Mandelbrot, 1989). Fractal sets are those whose characteristic
shape, variation of form, or degree of irregularity are scale
invariant. It is possible to describe or characterize a fractal object
or phenomena independently of the spatial or temporal scale of
observation (Mandelbrot, 1983). Fractal dimensions (FDs) may be
viewed as measures of the irregularity or heterogeneity of these
sets. FDs are exponents that relate the self-affine invariance or
statistically self-similarity of a given measure at different scales.

In mathematically defined sets, it is possible to find a determi-
nistic measure using the self similarity FD, also called Hausdorff

dimension (Falconer, 1989). However, when there is no mathema-
tical definition of the set, this method is computationally unfea-
sible, and approximations are required. The usual methodology to
obtain a self-similarity exponent for non-deterministic objects or
models, in particular, the magnitude or level of a pixel in digital
images (which may represent several physical measurements like
luminance, radiance, reflectance, among others), consists in estab-
lishing a regression between the variation of any relevant feature
of the set with respect to the measuring scale. For magnitudes like
area, perimeter, or grey level variation, FDs based on local bright-
ness variations, triangular prism (TP), and variogram are appro-
priate (Clarke, 1986; Mark and Aronson, 1984; Russ, 1993, 2011).
On the other hand, for probability, occupation, entropy, or spectral
FDs, other techniques are more adequate (Grassberger and
Procaccia, 1983a,b).

The localized properties of variance (i.e., texture) frequently
characterize the regions of an image more accurately than other
features. For these reasons, fractal estimators constitute a suitable
local descriptor for image segmentation for many applications.
Among them, two major areas are remote sensing (e.g. landscape
change detection and land use/cover classification) and medical
imaging (e.g. tissue segmentation, malformations or tumor detec-
tion/localization, early diagnosis of neurodegenerative diseases)
(Esteban et al., 2007; Reljin et al., 2000; Reljin and Reljin, 2002).

An efficient description of image texture is crucial for a
successful classification or segmentation of images based on local
spatial variations. Texture analysis refers to a class of mathematical
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procedures and models that characterize the spatial variations
(Srinivasan and Shobha, 2008).

The many different properties that take an active part in
texture description establish a wide variety of techniques for
texture characterization. A review and classification of texture
analysis algorithms can be found in Tuceryan and Jain (1998).
It includes techniques based on statistical methods, in which the
texture is characterized by statistical distribution of intensity
values within a region of interest; geometrical or structural meth-
ods, where the texture is characterized by feature primitives and
their spatial arrangements; model-based methods, in which a
mathematical model describes the texture; and signal-processing
methods, in which a set of filters with varying properties is used to
compute texture features.

Grey level co-occurrence matrix (GLCM) (Haralick et al., 1973)
is one of the most widely used statistical methods that estimates
image properties related to second-order statistics. The GLCM of
an image is the joint probability occurrence of grey levels i and j
for two pixels with a spatial relationship defined in terms of
distance d and angle θ. By changing these parameters, several
matrices can be constructed and a variety of features may be
extracted from them. Marrón (2012) focuses on how to apply
texture operators based on the concept of co-occurrence matrix
(energy, entropy and contrast) and fractal dimension (method of
range, box counting and Hurst dimension); examples of segmen-
tation over coast an city images illustrate the comparative study of
the operators.

Autocorrelation measures provide a way to quantify the scale
and spatial structure of images at different scales. Global measures
like semivariance (Matheron, 1971), Geary's C (Geary, 1954), and
Moran's I (Moran, 1948), summarize the spatial pattern across an
entire image. On the other hand, local measures like G statistics
(Getis and Ord, 1992), and LISA (Anselin, 1995), are necessary to
understand the dominant contributors to the global metrics. This
statistical analysis helps to overcome some masking effects of
global measures by revealing areas of spatial non-stationarity, and
thus may be used to identify a group of bright or dark pixels (‘hot
spots’ or ‘cold spots’) that represent a spectral response from a
homogeneous feature (Myint et al., 2007). Emerson et al. (1999)
measured the global spatial autocorrelation of satellite imagery to
observe the differing spatial structure of smooth and rough
surfaces. Myint (2003) studied the effectiveness in extracting
texture features or identifying different land-use and land-cover
classes in remotely sensed images. The study compared spatial
autocorrelation measures (Moran's I and Geary's C), three fractal
approaches (isarithm, triangular prism, and variogram), and sim-
ple standard deviation and mean value of the selected features.

Although FDs are not always sufficient as a single feature for
texture characterization, their invariance under geometric and
brightness transformations is a required feature for robust unsu-
pervised classification. The use of Gabor filters or other transfor-
mations of the original images as a preprocessing method for
producing additional features is proposed in Chaundhuri and
Sarkar (1995), and Dubuc et al. (1987). Kasparis et al. (2001) use
a bank of N Gabor filters to process the original image and
estimates the local fractal dimension (LFD) of them. With these
LFDs, they obtain feature vectors of dimension N which are used
for segmentation purposes. This methodology was tested on
mosaics of texture samples from Brodatz (1966). The main draw-
back of this approach, or others based on invariant transforma-
tions, is the resulting computational complexity.

Different methods for FD estimation have been applied exten-
sively in many disciplines. A survey of several commonly used
methods for estimating the fractal dimension and their applica-
tions to remote sensing problems can be found in Sun et al. (2006).
The paper presents a description of six computational methods

(triangular prism, differential box counting, variogram, isarithm,
robust fractal estimator and power spectrum).

Triangular prism (TP) (Clarke, 1986) has become one of the
most often used methods with remote-sensing images (Sun et al.,
2006; Ju and Lam, 2009; and references therein). Clarke's original
algorithm estimates the surface's FD as 2−B where B is the slope
derived from the log–log regression between the total prism
surface area and the step size squared. This method underesti-
mates the FD, whereas a modified TP using the step size leads to
experimentally more precise results (Zhao, 2001).

In Quattrochi et al. (1997) and Lam et al. (1998), the image
characterization and modeling system (ICAMS) is introduced.
ICAMS provides the ability to calculate the FD of images using
isarithm, variogram and the modified TP methods (Goodchild,
1980; Mark and Aronson, 1984). All of themwere compared in Lam
et al. (2002). In Zhou and Lam (2009), five FD estimators were
compared (probability, variation, and the three aforementioned)
using synthetic surfaces generated with three surface generation
algorithms. In both works, the same conclusions were reached
with respect to the FD estimators: the modified TP and the
isarithm algorithms have the lowest RMSE and standard deviation.
The authors mention also that the surfaces generated using the
random midpoint displacement (RMD) algorithm were more
congruent with the estimated FD than the surfaces generated
with shear displacement or with Fourier filtering.

An adjustment of the improved TP method for extending its
applications in local measurements was introduced in Ju and Lam
(2009). The algorithm calculates the FD within a local window
(local FD or LFD) aiming at image segmentation using LFD as a
feature. The new algorithm, called divisor-step (DS) due to the
sampling method used to improve the window coverage, was
found to be more robust and accurate than other sampling
alternatives like the conventional geometric-step (with fixed and
varying coverage) and the arithmetic-step (Emerson et al., 2005;
Lam et al., 1998; Quattrochi et al., 1997).

Another technique for LFD estimation can be derived from the
Hurst self-correlation exponent H, which characterizes the
expected range of variation ΔV of a function within a neighbor-
hood of size Δr, enabling a fit of the form ΔV∼ðΔrÞH . It is possible
to show that the resulting FD of such a function is D¼ 2−H
(Mandelbrot and Van Ness, 1968).

For digital images, computing H for a given pixel p entails the
regression (in log–log space) of the grey level variation ΔV within
a window around p using disks of decreasing radius r. The larger
the window we use, the more accurate estimation we obtain, but
the computational cost increases and the spatial accuracy
decreases (i.e. locating borders). In the case of surfaces, the
relation between D and H is D¼ 3−H, where 0≤H≤1 (Russ, 1993).
As will be shown later, this simple way of generalizing H estima-
tion to 2D sets using linear self-correlation (LSC) is prone to
produce meaningless results.

An enhanced method to estimate the self-correlation coeffi-
cient in surfaces was introduced in Silvetti and Delrieux (2007),
where a quadratic self-correlation (QSC) coefficient is evaluated
leading to more precise LFD estimations with respect to the LSC, at
the expense of a higher computational cost for the same window
size. In this work we present normalized integral fit (NIF), an
alternative to least square fit (LSF) that allows to compute a
distinct quadratic exponent. The novelty is based on the way of
evaluating the assessment of ΔV within a disc of radius r, and how
to weight the different ΔV values in the computation of the
quadratic self-correlation coefficient. The resulting LFD estimation
shows to be more robust and precise than other methods. We
compare our previous and new methods (QSC-LSF and QSC-NIF)
against LSC and DS (precision, accuracy, invariance under geo-
metric and brightness transformations) both with synthetic and
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