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a b s t r a c t

The parameters of environmental simulation models are often inferred by minimizing differences
between simulated output and observed data. Heuristic global search algorithms are a popular choice for
performing minimization but many algorithms yield lackluster results when computational budgets are
restricted, as is often required in practice. One way for improving performance is to limit the search
domain by reducing upper and lower parameter bounds. While such range reduction is typically done
prior to optimization, this study examined strategies for contracting parameter bounds during
optimization. Numerical experiments evaluated a set of novel “telescoping” strategies that work in
conjunction with a given optimizer to scale parameter bounds in accordance with the remaining
computational budget. Various telescoping functions were considered, including a linear scaling of the
bounds, and four nonlinear scaling functions that more aggressively reduce parameter bounds either
early or late in the optimization. Several heuristic optimizers were integrated with the selected
telescoping strategies and applied to numerous optimization test functions as well as calibration
problems involving four environmental simulation models. The test suite ranged from simple
2-parameter surfaces to complex 100-parameter landscapes, facilitating robust comparisons of the
selected optimizers across a variety of restrictive computational budgets. All telescoping strategies
generally improved the performance of the selected optimizers, relative to baseline experiments that
used no bounds reduction. Performance improvements varied but were as high as 38% for a real-coded
genetic algorithm (RGA), 21% for shuffled complex evolution (SCE), 16% for simulated annealing (SA), 8%
for particle swarm optimization (PSO), and 7% for dynamically dimensioned search (DDS). Inter-
algorithm comparisons suggest that the SCE and DDS algorithms delivered the best overall performance.
SCE appears well-suited for solving low-dimensional problems using a moderate computational budget,
while DDS appears better suited for solving high-dimensional problems using a restricted computational
budget.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Environmental modelers must often establish input parameter
values given limited site-specific knowledge. Standard practice
performs parameter estimation (aka calibration) to infer these
unknown values by matching model outputs against correspond-
ing historical data. An optimization-based approach coupling a
given model with an optimization search algorithm is commonly
employed. The optimizer adjusts model parameter values to
minimize a calibration objective function, such as the weighted
sum of squared differences between observations and simulated

equivalent outputs. Numerous optimizers have been applied to the
problem of calibrating environmental simulation models and
heuristic global search algorithms are popular choices within the
geoscience community (e.g. D'Ambrosio et al., 2006; He et al.,
2007; Massoudieh et al., 2008; Matott et al., 2011; Tran et al.,
2006; Vesselinov and Harp, 2012; Vrugt et al., 2006). Heuristic
optimizers do not use derivatives, instead following empirical
guidelines and incorporating structured randomness. These fea-
tures enable avoidance of three commonly recognized pitfalls
encountered during calibration of complex environmental models,
namely converging on local minima (Skahill and Doherty, 2006),
stalling in insensitive regions (Essaid et al., 2003; Matott and
Rabideau, 2008), and difficulty obtaining reliable derivative infor-
mation (Kavetski, 2006).

Heuristic optimizers can require numerous (e.g. tens to hun-
dreds of thousands) objective function evaluations for good perfor-
mance. This is impractical for calibrating complex environmental
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models with forward run-times of minutes to days (Mugunthan
and Shoemaker, 2006; Mugunthan et al., 2005; Zhang et al., 2009).
Practitioners can reduce computational burden by shrinking
the parameter space before optimization (e.g. Benaman and
Shoemaker, 2004; Johnson and Tucker, 2008; Willms, 2007; Willms
and Szusz, 2013). Alternatively, this study introduces several novel
strategies for contracting the parameter space during optimization.

Five telescoping strategies were developed and explored via
extensive numerical experiments. Representative heuristic optimi-
zers were run in a baseline (i.e. no bounds reduction) configuration
and re-run using each telescoping strategy. Baseline and modified
optimizers were applied to mathematical optimization test functions
and environmental model calibration problems involving watershed
rainfall-runoff, groundwater flow, and subsurface contaminant trans-
port. Overall, the test suite ranged from easily visualized 2-parameter
surfaces to complex 100-parameter landscapes, allowing for mean-
ingful generalization of results. Massively parallel numerical experi-
ments were applied using the test suite, facilitating comparisons of
the selected optimizers and telescoping strategies across a variety of
restrictive computational budgets.

1.1. Related research

Other approaches for reducing the computational burden of
heuristic optimizers include surrogate modeling, parallel computing,
model pre-emption, and hybridized algorithms. Razavi et al. (2010)
provide a recent review of these approaches, which are complemen-
tary to the telescoping strategies developed here. Previous investiga-
tions of dynamic range reduction have emphasized a single heuristic
optimizer and considered much fewer test problems (e.g. Ndiritu
and Daniell, 2001; Nieva et al., 1987; Ryoo and Sahinidis, 1995;
Selvakumar and Thanushkodi, 2007; Zamora and Grossmann, 1998).
Some existing optimizers already contain operators for dynamically
reducing parameter ranges as an essential component of their
behavior (e.g. Hansen et al., 2003; Qian and Mahfouf, 2007). How-
ever, generalizing these range reduction operators for use within
other algorithms is non-trivial. In contrast, the telescoping strategies
introduced here are easily linked with arbitrary search algorithms
and require no changes to the underlying algorithm mechanics.
Heuristic optimizers explored in this research include: a real-coded
genetic algorithm (RGA) (Yoon and Shoemaker, 2001), dynamically
dimensioned search (DDS) (Tolson and Shoemaker, 2007), simulated
annealing for continuously-varying parameters (CSA) (Vanderbilt and
Louie, 1984), shuffled complex evolution (SCE) (Duan et al., 1993),
and particle swarm optimization (PSO) (Kennedy et al., 2001). This
represents a cross-section of available heuristic algorithms.

Calibration methods may be classified as optimization- or
uncertainty-based (Razavi et al., 2010). Unlike the optimization-based
approach utilized for this research, uncertainty-based approaches
delineate distributions of parameter configurations rather than a
single optimal parameter set (Marzouk and Najm, 2009; Tarantola,
2005). Uncertainty‐based calibration involves the coupling of an
environmental or geoscience model with a sampling engine. The
sampler randomly generates alternative model parameter config-
urations with the goal of developing a calibrated probability
distribution for the parameters. Tools suitable for uncertainty‐
based calibration include Generalized Likelihood Uncertainty Esti-
mation (GLUE) (Beven and Binley, 1992), sequential uncertainty
fitting (SUFI‐2) (Abbaspour et al., 2004) and various Bayesian and
Markov chain Monte Carlo (MCMC) implementations (Kuczera and
Parent, 1998; Tarantola, 2005). Optimization-based search algo-
rithms are increasingly being incorporated into uncertainty-based
approaches (Khu and Werner, 2003; Mugunthan and Shoemaker,
2006; Tolson and Shoemaker, 2008; van Griensven and Meixner,
2007; Vrugt et al., 2006). Thus, the present study is relevant to
both types of calibration.

1.2. Parameter estimation in environmental and geoscience
modeling

In-depth discussions of calibration in the context of environmental
and geoscience modeling are provided elsewhere (e.g. Beven, 2012;
Hill and Tiedeman, 2007; Kennedy and O'Hagan, 2001). However a
brief review of current practice and challenges serves to highlight the
relevance of dynamic range reduction to the geoscience community.
As mentioned previously, heuristic optimization is a state-of-the-art
approach for parameter estimation that has been widely embraced in
the environmental and geoscience modeling communities. With
respect to groundwater and subsurface reactive transport applications,
the calibration problem is commonly formulated as minimization of a
weighted sum of squared residuals expression (Hill and Tiedeman,
2007). In surface hydrology and rainfall-runoff applications, maximiz-
ing the Nash–Sutcliffe efficiency measure is a more common objective
(Beven, 2012). Data weighting and assimilation schemes also play an
important role in the calibration problem formulation (Vrugt et al.,
2005), as does the availability and treatment of prior and/or soft
information about a given site or case study (Winsemius et al., 2009).
Some difficult and somewhat philosophical issues associated with
model calibration include: the treatment of equifinality (Beven, 2006;
Mantovan and Todini, 2006), the merits of Bayesian and informal
approaches to uncertainty quantification (Beven, 2009; Beven et al.,
2007; Vrugt et al., 2009), validation methodologies (Konikow and
Bredehoeft, 1992; Moriasi et al., 2012; Unger et al., 2012), and multi-
model ranking and selection (Poeter and Anderson, 2005; Riva et al.,
2011; Ye et al., 2008). These issues continue to be a source of intensive
investigation and debate within the environmental and geoscience
modeling community.

As illustrated by the preceding overview, calibration of environ-
mental and geoscience models is a complex endeavor with many
challenging aspects. However, a common theme among the different
approaches and issues is the need to search the calibration parameter
space for high-quality or high-probability parameter values. In fact,
published procedures for addressing equifinality, uncertainty quanti-
fication, validation, and multi-model ranking and selection are all
predicated on the ability to identify those parameter sets which
provide the best possible correspondence between observation data
and simulated responses. By improving search algorithm perfor-
mance, the telescoping strategies introduced herein facilitate con-
comitant improvements in many other calibration activities of interest
to environmental and geoscience modelers.

2. Methods

The merits of telescoping were assessed via comparison with
baseline (i.e. no telescoping) algorithm behavior. Corresponding
numerical experiments considered a multi-factored set of treatments
including 5 telescoping strategies, 139 test problems comprising
variations of 15 mathematical test functions and 4 calibration case-
studies, and 5 heuristic optimizers. Mathematical test functions
incorporated combinations of 3 alternative computational budgets
and 3 levels of parameter dimensionality. Running multiple (e.g. 50)
trials of each optimization experiment captured the central tendency
of performance.

2.1. Telescoping strategies

Fig. 1 illustrates the general telescoping concept and depicts a
two-dimensional objective function surface to be searched by
a heuristic algorithm. Parameter bounds are initially assigned
a-priori limits (Fig. 1a). As the search progresses, and computational
budget dwindles, the searchable parameter bounds are progres-
sively contracted (Fig. 1b–d). In this way the parameter space over
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