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a b s t r a c t

The inverse transformation of coordinates, from Cartesian to curvilinear geodetic, or symbolically

(x,y,z)-(l,j,h) has been extensively researched in the geodetic literature. However, published formula-

tions require that the application must be deterministically implemented point-by-point individually.

Recently, and thanks to GPS technology, scientists have made available thousands of determinations of

the coordinates (x,y,z) at a single point perhaps characterized by different observational circumstances

such as date, length of occupation time, distance and geometric distribution of reference stations, etc. In

this paper a least squares (LS) solution is introduced to determine a unique set of geodetic coordinates,

with accompanying accuracy predictions all based on the given sets of individual (x,y,z) GPS-obtained

values and their variance–covariance matrices. The (x,y,z) coordinates are used as pseudo-observations

with their attached stochastic information in the LS process to simultaneously compute a unique set of

(l,j,h) curvilinear geodetic coordinates from different observing scenarios.

Published by Elsevier Ltd.

1. Introduction

Many scientists have investigated the so-called, non-trivial,
inverse transformation of coordinates from Cartesian (x,y,z) to
curvilinear (orthogonal) geodetic coordinates (l,j,h). Both sets of
coordinates are defined with respect to any arbitrary geodetic
Cartesian reference frame and, in the case of geodetic coordinates,
a complementary rotational ellipsoid with center at the origin of the
Cartesian frame, its semi-minor axis coincident with the z-axis, and
its semi-major axis on the equatorial plane defined by the x and
y axes. The selected rotational ellipsoid is typically the GRS80
ellipsoid as adopted by the International Association of Geodesy
(Moritz, 1992). For an exhaustive study of the many inverse trans-
formations available to the user, the readers may consult
Featherstone and Claessens (2008) and Awange et al. (2010, p. 157)
where they will find a partial list of approaches to solve this specific
transformation problem. A recent article by Shu and Li (2010) cites
newly developed algorithms to compute geodetic coordinates not
mentioned in any of the above mentioned references. For complete-
ness, it should also be mentioned that the International Earth
Rotation and Reference System Service (IERS) recommends the use
of Fukushima’s (1999) iterative method. However, all these transfor-
mation equations and algorithms were analytically developed to
compute coordinates in a one-by-one point basis, that is, given the

Cartesian coordinates of a point determine the equivalent curvilinear
geodetic coordinates at the same point; therefore they are determi-
nistic methods but not stochastic methods.

The alternative method presented herein takes advantage of
the large number of (x,y,z) determinations that we sometimes
have on hand these days at a single particular point when
processing GPS data. The main idea that we are proposing is to
obtain the most accurate curvilinear geodetic coordinates obtain-
able from the complete set of available GPS ‘‘detrended’’ time
series (x,y,z) coordinates (e.g. Teza et al., 2010). Not only are the
results going to be statistically meaningful, in a least squares (LS)
sense, because as a byproduct the full variance–covariance (v–c)
matrix for this uniquely derived triplet of coordinates can be
determined. This statistical element is missing from the standard
transformation formulas mentioned above. Other options, as for
example, taking the weighted mean of all individually computed
(x,y,z) values and finally transform them to (l,j,h) using any of
the current methods will not be as complete, statistically speak-
ing, as the procedure that will be outlined in this paper. If nothing
else, because the v–c matrix of each individually processed GPS
point (x,y,z) is known and taken into consideration in the LS
solution. This information is not properly exploited when taking
any other type of statistical sample averages.

As an immediate practical application of this procedure, one
may think of the calculation of a single unique set of geodetic
coordinates for a point, referred to a predefined datum ellipsoid,
determined from a set of original GPS-processed (x,y,z) solutions.
The intention here is to get the ‘‘best’’ (l,j,h) coordinates for each
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point that, subsequently, could be stored in the type of geodetic
databases that are constantly revised and updated because of the
introduction of new GPS positioning data.

Present-day GPS applications allow for the archiving of (x,y,z)
coordinates of the same point perhaps determined at different times
by many practitioners using a diverse spectrum of observing session
durations (e.g. 1 h vs. 2 h, etc.). However, it is known that the
accuracy of GPS processed solutions is highly dependent on the total
time span of the observing session (Eckl et al., 2001; Soler et al.,
2006); therefore, the input v–c matrix of the Cartesian coordinates
implicitly contains the quality of the (x,y,z) pseudo-observations.

The recommended methodology can employ one and every one
or all of these thousands of independent sets of (x,y,z) coordinates
at a single point (perhaps obtained from different GPS campaigns)
with their available stochastic model to compute, through a LS
procedure, a unique value for the curvilinear geodetic coordinates
at the same point making full use of the available statistics, which,
as is well known, are highly dependent on many factors, such as
total observation time span, atmospheric conditions, etc.

At the end, if required, a straight one-by-one direct transfor-
mation from geodetic to Cartesian (see Eq. (1) below) could be
implemented by adding the corresponding statistics after trans-
forming the final v–c matrix of the curvilinear coordinates just
determined by LS to the Cartesian v–c matrix.

2. Mathematical formulation

The basic mathematical relationship between Cartesian and
orthogonal curvilinear geodetic coordinates is attributed to
Helmert (1880, p. 136) and can be written in matrix form as
(see e.g. Soler, 1976):
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In all the above equations, a and f are the semi-major axis and
flattening of the selected ellipsoid, respectively.

2.1. Least squares methodology

The theory described herein follows the mathematical reason-
ing and matrix notation described in Leick (2004, p. 110).

The general functional expression (mathematical model) used
in the adjustment is given by Eq. (1) and can be written
symbolically as

‘a ¼ fðxaÞ ð6Þ

where ‘a denotes the vector of n adjusted observations and xa

denotes u adjusted parameters (unknowns).
From Eq. (1) we can write explicitly the required set of

variables as follows:
The column matrix containing the unknowns (u¼3) is
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while the column matrix of observables takes the form:
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Notice that the total number of repeated observations of the
same point is n, and that the total number of equations in (6) is
r¼3n.

According to Leick (2004, p. 111), the least squares solution of
the adjustment model can be written in matrix notation as

x̂
3�1
¼�N�1u ð9Þ

where the normal equation matrices are given explicitly by

N
3�3
¼ATPA ð10Þ

and

u
3�1
¼ATP‘ ð11Þ

The design matrix A in Eqs. (10) and (11) is computed
according to the following matrix expression:
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