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A B S T R A C T

A vision model is designed using low-level vision principles so that it can perform as a human observer
model for camouflage assessment. In a camouflaged-object assessment task, using military patterns in an
outdoor environment, human performance at detection and recognition is compared with the human
observer model. This involved field data acquisition and subsequent image calibration, a human
experiment, and the design of the vision model. Human and machine performance, at recognition and
detection, of military patterns in two environments was found to correlate highly. Our model offers an
inexpensive, automated, and objective method for the assessment of camouflage where it is impractical,
or too expensive, to use human observers to evaluate the conspicuity of a large number of candidate
patterns. Furthermore, the method should generalize to the assessment of visual conspicuity in non-
military contexts.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Military personnel and equipment need protection from
detection during conflict. Camouflage is the primary method to
achieve this, frequently through coloured textures that match the
background and/or disrupt the object’s outline [1–3]. Assessment
of effectiveness can be carried out in a number of ways. The most
intuitive method is to use human participants as observers. Such
an apparently straightforward procedure, however, is not only
limited by uncontrollable conditions, such as the weather: it is also
impractical given the large variety of objects/patterns that one
might want to evaluate and the range of environments one might
want them to be assessed in. Field trials are also expensive and, in
some circumstances, may not even be possible. They also do not
lend themselves to precise isolation of exactly what leads to the
failure of camouflage, something that a paired comparison of
otherwise identical target-present and target-absent scenes would
allow. Photo-simulation attempts to overcome weather constraints
and problems with inaccessible environment-types by using
photographic or synthetic imagery. Recent advances in synthetic

rendering are impressive; however, current methods are still
computationally expensive and the images are unrealistic at small
spatial scales due to the current limitations of simulating realistic
ray scattering. Furthermore, human experiments are necessarily
subjective and do not readily allow evaluation of camouflage
against autonomous systems perhaps operating using different
spectral bandwidths than the human vision. A computational
approach is therefore helpful in overcoming the limitations of
assessing camouflage when using human observers. Such a
computational model should be ideally designed, in the first
instance, in accordance with the human visual system, since it will
be performing the task of a human observer and, if it is to replace
subjective assessment, needs to be compared with human
performance. More generally, however, such a system could be
adapted to have a different ‘front end’ (e.g. infra-red sensor,
hyperspectral sensor). Therefore it is surprising that a biologically
motivated design for the assessment of camouflage has not been
implemented.

This omission means that the confidence and extendibility of
current models and metricsare low, fallingshort in their ability to
cope with high dynamic range (i.e. natural) [4–6], semi-automatic
labelling or tracking of the target [7], non-probabilistic and non-
scalable distancemetrics to highdimensional data or multiple
observations given many images [8–10]. Human behavioural data
need to be recorded to assess the coherence between human and
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model observers. This requires tasking human and model
observers with the same experiment, based on a stimulus set
from the real world: outdoor environments and militarily relevant
objects.

2. Method

An experiment was devised so that human participants and a
model observer could both be tasked with it, allowing for direct
comparison. This method section is broken down into the three
components that comprise this study: (i) images of objects placed
in real world scenes were photographed and calibrated; (ii) a
human experiment, using a protocol from psychophysics, recorded
unbiased performance for recognition and detection of these
objects; and (iii) the design of the visual observer model, and
modelling the discrimination task.

2.1. Stimuli

Targets were photographed in two outdoor environments in the
UK: Leigh Woods National Nature Reserve in North Somerset
(2�38.60 W, 51�27.80 N), which is mixed deciduous woodland, and
Woodbury Common in Devon (3�220 W, 50�400 N), a heathland
used for Royal Marine training. A replica military PASGT helmet
(Personnel Armor System for Ground Troops, the US Army’s
combat helmet until the mid-20000s) was the chosen object used
in the experiment and visibility was manipulated by changes in
helmet covers varying in both colour and textural appearance
(Fig. 1). The camouflage patterns worn by the helmet were United
Nations Peacekeeper Blue (UN PKB), Olive Drab, Multi-Terrain
Pattern (MTP, as used by the British Army since 2012), Disruptive
Material Pattern (DPM, the dominant British Army pattern prior to
the adoption of MTP), US Marine Pattern (MarPat) and, for the
Woodbury Common experiment, Flecktarn (as used by the
Bundeswehr, the German Army). These patterns were chosen
not for the purpose of evaluation per se, but to reflect a range of
styles (e.g. unpatterned Olive Drab, DPM as a subjective human
design, MTP and MarPat based on spatio-chromatic analysis of
natural scenes, but MarPat being ‘digital’ or pixellated), with UN
PKB as a high visibility control.

For the computational approach to be useful, the spectrum of
visibility across the patterns should be highly correlated in the
model and human observers. Scene locations were selected on a
meandering transect through the habitats, at 20 m intervals and
alternating left and right. If the predetermined side was
inaccessible or inappropriate due to occlusions then the opposite

side of the transect path was used, and if neither side was
accessible the interval was ignored and the next location in the
transect was used. At each location the object was placed in a 3 � 3
grid resulting in nine images. The distance of each row of the grid
was 3.5, 5 and 7.5 m. The scene was also divided into 3 arcs: left,
middle and right. The combination of distance and left-right
positioning mean that, in the subsequent tests on humans, the
location of the target within the scene was unpredictable. This
resulted in nine images of each helmet per location for analysis,
plus a scene including a Gretag-Macbeth Color Checker chart
(X-Rite Inc., Grand Rapids, Michigan, USA) for calibration. The
orientation of the helmet in each photograph was set an angle
drawn randomly from the uniform distribution {0, 45, 90, 135, 180,
225, 270, 315�}. For efficiency of implementation, the list of
random angles was generated before going into the field. Each
scene was also photographed without a helmet present. Photo-
graphs were taken using a Nikon D80 digital SLR (Nikon Ltd., Tokyo,
Japan) with focal length 35 mm, exposure 1/30 and F-Number 16.
An example of these images can be found in Figs. 2 and 3, using two
different helmets. RAW images (Nikon NEF format) were captured
and these were subsequently converted to uncompressed 8-bit
TIFF and calibrated. Images were calibrated by recording lumi-
nance and chromatic spectral values of the Gretag-Macbeth colour
chart in the field using a Konica Minolta Chroma Meter CS – 100A
colour and luminance meter (Konika, Tokyo, Japan). This process
was repeated three times to average over the natural variation in
lighting from moment to moment. The spectral values were
transformed to the CIE sRGB colour space after first converting
them to the CIE XYZ colour space. The process was then repeated in
the lab from a projected image from the projector. A cubic
polynomial approximated the relationship between the two sets of
RGB measurements. Images were then calibrated using the
coefficients of the polynomial for each RGB channel. Not only
does this procedure avoid having a colour chart in every single
image, but also it calibrates the entire pipeline in a single step:
calibrating the camera, projector and images individually could
result in over-fitting or multiplicative errors.

2.2. Human experiment

2.2.1. Participants and materials
A human experiment using 22 participants for the Leigh Woods

dataset and another 20 participants for the Woodbury Common
dataset was conducted. Each of the two experiments had an equal
proportion of each gender. Images were projected onto a
190 � 107 cm screen (Euroscreen, Halmstad, Sweden) from

Fig. 1. Example cropped helmet images from real world scenes.
An example of each camouflaged helmet cropped for recognition purposes. From left to right the patterns that the helmet wears are DPM, MarPat, MTP, UN PKB, Olive drab and
Flecktarn. The top row are the helmets from Leigh Woods and the bottom row are helmets from Woodbury Common. Flecktarn was only used in Woodbury Common.
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