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A B S T R A C T

Discriminating value crops from weeds is an important task in precision agriculture. In this paper, we
propose a novel image processing pipeline based on attribute morphology for both the segmentation and
classification tasks. The commonly used approaches for vegetation segmentation often rely on
thresholding techniques which reach their decisions globally. By contrast, the proposed method works
with connected components obtained by image threshold decomposition, which are naturally nested in a
hierarchical structure called the max-tree, and various attributes calculated from these regions. Image
segmentation is performed by attribute filtering, preserving or discarding the regions based on their
attribute value and allowing for the decision to be reached locally. This segmentation method naturally
selects a collection of foreground regions rather than pixels, and the same data structure used for
segmentation can be further reused to provide the features for classification, which is realised in our
experiments by a support vector machine (SVM). We apply our methods to normalised difference
vegetation index (NDVI) images, and demonstrate the performance of the pipeline on a dataset collected
by the authors in an onion field, as well as a publicly available dataset for sugar beets. The results show
that the proposed segmentation approach can segment the fine details of plant regions locally, in contrast
to the state-of-the-art thresholding methods, while providing discriminative features which enable
efficient and competitive classification rates for crop/weed discrimination.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Robust vision systems are a core technology for building
autonomous robots in precision agriculture. Such systems auto-
mate time-consuming manual work in the field while increasing
yield and reducing the reliance on herbicides and pesticides. To
achieve this, the developed vision systems need to be able to
monitor the crop and target only the specific plants that need
treatment. Specifically, a number of approaches to discriminate
value crops from weeds were developed [1–4] and employed in
robotic systems, which use this information to perform tasks such
as mechanical weeding and selective crop spraying.

Mathematical morphology [5], and specifically attribute
morphology, offers a versatile framework to perform multi-scale
spatial analysis of image content in various image domains.

Efficient implementations rely on hierarchical image representa-
tions and enable fast processing of large amounts of image data.

The contributions of this paper are threefold. Firstly, we
propose a novel and unified pipeline for crop/weed detection and
classification relying fully on attribute morphology. Secondly, we
evaluate the approach on a publicly available sugar beets
classification dataset [6] as well as a newly collected dataset
focused on onion crops, which exhibits a higher variation in
lighting and registration errors, thus requiring a more robust
solution. Finally, we demonstrate the locality of the proposed
approach and its ability to segment the fine details of plants, in
contrast to the state-of-the-art global thresholding methods, as
well as the discriminative properties of the provided features by
obtaining competitive classification rates for crop/weed discrimi-
nation.

In the following section, we give a brief overview of related
work from both precision agriculture and image morphology.
Then, in Section 3 we explain the basic principles of attribute
morphology, highlighting its advantages compared to standard
structuring element morphology and explaining the data structure
which enables the efficient implementation of the proposed
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pipeline. The core of the proposed approach is presented in
Section 4. The data and experimental setup are explained in
Section 5 followed by the results in Section 6. Finally, we conclude
the paper and highlight future research directions in Section 7.

2. Related work

In order to apply per-plant treatments in precision agriculture,
the vision system first performs segmentation, thus discarding all
non-vegetation pixels, followed by classification of the remaining
vegetation pixels to determine the correct treatment for plant
regions of different types. We examine the related work through
this two-step process.

Several choices for the segmentation step were explored in the
literature, including colour-index based images calculated from
RGB images (examples include ExG [7], ExR [8], CIVE [9], VEG [10]),
normalised difference vegetation index (NDVI) images obtained
from multi-spectral cameras as the difference-sum ratio of the
near infra-red and visible red components [11,12], images in colour
spaces such as LAB [13] and different hue-based colour spaces [14].
The choice of input image is then thresholded to separate soil from
vegetation. The threshold decision is usually reached globally, e.g.
using Otsu's threshold selection method [15], resulting in methods
sensitive to varying lighting conditions and requiring post-
processing to locally adjust the output of thresholding by removing
noise. More robust segmentation approaches were developed
using machine learning-based methods [16,14,2,13] but they come
at an increased computational cost and are not well suited for real-
time applications. For a recent overview of segmentation
techniques applied to vegetation segmentation the reader is
referred to [17].

Following the segmentation step, the foreground (vegetation)
pixels are further classified into crops and weeds. Distinguishing
between multiple weed classes is sometimes also of interest.
Classifying only the vegetation pixels instead of all image pixels
significantly reduces the computational load of classification.
Colour information is often not enough to perform classification
successfully, so additional information about texture and shape is
often introduced. The two main approaches to classification are
local pixel or grid-based approaches [3,18,4] and region-based
approaches [1,19], which can also be used in conjunction [12] to
benefit from the advantages of both approaches. While the region-
based approaches are typically very fast, as they deal with several
tens of regions per image, they cannot cope well with occlusions to
reach a fine-grained decision on a vegetation patch with over-
lapping crops and weeds. An additional component labelling step
on the segmented image is required to prepare the input for a
region-based classifier. On the other hand, pixel-based approaches
suffer from high computational cost. This is partially mitigated by
classifying only certain pixels on a grid and interpolating the
classification values of other pixels. However, due to their high
classification accuracy and robustness to partial occlusion, the
strength of these approaches lies in applying them to the limited
amount of pixels for which the region-based approaches do not
reach a certain decision. In this paper, we propose a novel pipeline
for both segmentation and region-based classification of plants,
while the development of a complementary pixel-based classified
is left for future work.

Mathematical morphology, with the recent developments in
hierarchical image representation and attribute morphology,
offers a versatile and efficient framework to perform multi-scale
spatial analysis of image content in various image domains.
Historically applied to segmentation problems [20–22], various
morphological techniques were recently successfully applied to a
large number of image processing and computer vision problems
including object detection [23,24], segmentation [25,26], image

retrieval [27–29], scene classification for remote sensing [30–32]
and more. Fast processing is achieved by using a hierarchical image
decomposition such as the max-tree [22], relying on efficient
construction algorithms, parallelisation and simultaneous calcu-
lation of attributes used throughout the processing pipeline,
allowing attribute morphology approaches to be applied to images
as large as several Gpx, with reported speeds of up to 370 Mpx/s
when using parallelisation [33].

3. Attribute morphology and hierarchies

Classical approaches to mathematical morphology rely on the
concept of a structuring element (SE) to define the basic operations
of erosion and dilation, and then opening and closing. The erosion
operation will erode or shrink the boundaries of foreground
regions, thus making the foreground shrink in size and removing
all small foreground components, with dilation being the
complementary operation. Combining erosion and dilation
sequentially produces the opening operator, which enables the
removal of small foreground components without introducing big
changes to other foreground elements. The complementary
operator of closing is obtained by first applying dilation and then
erosion. The SE is a (typically small) binary image with a defined
origin, with which the input image is “probed” to calculate the
output image. Thus, an erosion corresponds to placing the SE at all
positions in the input image, and placing a foreground pixel at the
SE origin in the output image if all the SE pixels fall onto foreground
pixels of the input image. Similarly, with dilation a foreground
pixel is placed at the SE origin in the output image if any of the SE
pixels fall onto the foreground in the input image. Finally, an
opening operator corresponds to placing an SE at all positions in
the input image, and placing foreground pixels on all the SE pixels
in the output only if the whole SE falls into the foreground.

However, relying on a structuring element to define an opening
has several drawbacks: the boundaries are not faithfully preserved,
the method is not rotationally invariant (i.e. designing a single SE to
respond to elongated objects is not possible and thus multiple line-
like SEs with different orientations need to be used), and shape and
size are treated together, making it difficult to filter objects based
on only one of these characteristics.

To address these problems, morphology has moved in the
direction of connected filters [34,26]. The first such operators were
binary opening and closing by reconstruction [35,36], which still
rely on a SE to define which foreground regions should be removed
from the image but fully reconstruct all the remaining compo-
nents. The problems of rotational invariance and decoupling of
shape and size are addressed in attribute morphology [37,22], in
which the SE is omitted completely. Instead, in attribute
morphology the decision to keep or discard is reached at region
level, thus only keeping the regions where an attribute satisfies a
certain criterion. This allows using criteria such as “area of the
region is greater than 100” to process the input image. The
difference between an opening with an SE, opening by reconstruc-
tion and an area opening on a binary image is shown in Fig. 1.

All the basic operators defined in SE morphology are increasing,
meaning that they preserve the order of binary images such that B1
� B2 then F(B1) � F(B2) where F(�) is the operation of erosion,
dilation, opening or closing by an SE. This allows the extension of
binary SE morphology to greyscale images relying on the principles
of threshold decomposition [38] and stacking [39]. A greyscale
image f : E ! Z; E � Z2 is represented by its upper-level sets,
defined as Lk ¼ ff � kg with k 2 Z, i.e. the set of images obtained
by thresholding an image at all possible values of their pixels
(similarly one can work with lower-level sets Lt). The result of
applying a morphological operator to a greyscale image can then
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