Computers in Industry 96 (2018) 1-9

COMPUTERS IN -
INDUSTRY, -

Contents lists available at ScienceDirect

Computers in Industry

journal homepage: www.elsevier.com/locate/compind

Check for
updates

Agile and hierarchical round-trip engineering of IEC 61131-3 control
software

Marcin Jamro®, Dariusz Rzonca®*

2TITUTO Sp. z o.0. [Ltd.], Zelwerowicza 52G Street, 35-601 Rzeszow, Poland
b Rzeszow University of Technology, al. Powstancow Warszawy 12, 35-959 Rzeszow, Poland

ARTICLE INFO ABSTRACT

Article history:

Received 2 July 2017

Received in revised form 7 October 2017
Accepted 9 January 2018

Available online xxx

The control software often performs complex, important, and responsible operations in industrial
manufacturing systems. The size and complexity of such software are still increasing, thus it is important
to provide engineers with methods and tools that simplify the development process. The situation can be
improved by modeling using the Model-Driven Development (MDD) approach, standardized
implementation process, as well as various testing methods. In the paper, the authors propose the

Keywords: further step, which consists of the comprehensive agile hierarchical round-trip engineering approach
Control software dedicated to the IEC 61131-3 control software. It divides the project into four connected parts - model,
IEC 61131-3 . configuration, implementation, and tests. Such a solution allows developers to work independently and
Implementation . -

Modeling iteratively on various project parts, because changes are discovered automatically and are propagated to

Round-trip engineering suitable views inside the project. The synchronization mechanism has been introduced into the CPDev

Synchronization
Testing

engineering environment for programming industrial controllers.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The control software is commonly used in many areas of
industry. It is typically based on Programmable Logic Controllers
(PLCs) that perform a crucial role in automated and semi-
automated manufacturing systems [1]. Such a kind of software
performs important and complex tasks, which improper operation
may cause serious negative consequences, including danger for
operators.

Nowadays, requirements for projects could change frequently
and need to be adjusted even quite late in the development
process. Apart from it, there is a visible trend of replacing hardware
implementation with software [2]. What is more, complexity of
software is still increasing. As stated by Vanderperren et al., the
complexity of embedded software is doubled every 10 months [3].
Currently, more than 80% of embedded system features are
conducted by software [4].

Similar observations are possible for control systems. As
mentioned by Estevez et al., integration, reuse, flexibility, and
optimization are required [5]. Alvarez et al. indicate that clear
methodologies and procedures are demanded [6]. Thus, it is

* Corresponding author.
E-mail addresses: marcin@tituto.com (M. Jamro), drzonca@kia.prz.edu.pl
(D. Rzonca).

https://doi.org/10.1016/j.compind.2018.01.004
0166-3615/© 2018 Elsevier B.V. All rights reserved.

necessary to introduce concepts that can simplify and shorten the
development process, as well as limit a number of errors existing in
the application running on a plant.

Modeling, automatic code generation, standardized implemen-
tation, as well as testing may be beneficial and increase the overall
control software quality. However, in case of complex systems,
there is often a necessity of making modifications in various
project parts, even after generating a part of code from the model.
For instance, a developer could need to adjust code of a few units
after their generation, but it is not convenient to introduce the
same changes in the model manually. Without proper mecha-
nisms, the system can be moved into the unsynchronized state and
its further usage can be really complicated. Introducing the reverse
engineering [7] into the development process can solve some
problems by generating the model from the current implementa-
tion code. However, a much better solution is the round-trip
engineering (RTE) [8], which tracks changes made in the project
and propagates them to leave the project in the synchronized state.

In this paper, the authors propose the agile hierarchical round-
trip engineering approach to the IEC 61131-3 control software
development process. It supports tracking changes and propagat-
ing them into the model, configuration, implementation, and tests.
The synchronization can be performed either automatically or
semi-automatically. The concept makes it also possible to adjust
the order of development stages according to developer's
preferences and the project specificity.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2018.01.004&domain=pdf
mailto:marcin@tituto.com
mailto:drzonca@kia.prz.edu.pl
https://doi.org/10.1016/j.compind.2018.01.004
https://doi.org/10.1016/j.compind.2018.01.004
http://www.sciencedirect.com/science/journal/01663615
www.elsevier.com/locate/compind

2 M. Jamro, D. Rzonca/Computers in Industry 96 (2018) 1-9

To make understanding of the proposed RTE concept easier, the
running example is presented and explained while describing the
approach. It is a very simple alarm system consisting of three
motion detectors, implemented as state machines. By default, the
system is stopped. After engaging by the user, all sensors are
activated and monitor suitable areas. If any motion is detected, the
alarm is started. It can be stopped by switching off the system.

The paper is organized as follows. In the next part, the
supported development process is briefly presented. In Section 3,
related work is described. Section 4 shows the proposed RTE
concept to the IEC 61131-3 control software. The following part
(Section 5) presents a simple example of the RTE process with
explanation of automatically performed operations in the project.
The next four parts specify stages of the concept related to
propagating changes from model (Section 6), configuration
(Section 7), implementation (Section 8), and tests (Section 9).
The proposed approach has been introduced into the CPDev
engineering environment, which is presented in Section 10.

2. Supported development process

The proposed RTE concept supports the software development
process that consists of modeling, standardized implementation,
and precise testing. Such operations could allow to significantly
increase the product quality and are shortly described in this
section.

2.1. Modeling with code generation

The modeling can be applied using the Model-Driven Develop-
ment (MDD) [9] or Model-Driven Architecture (MDA)! [10]
approaches. A model can be created in a suitable modeling
language, such as Unified Modeling Language (UML) [11] or
Systems Modeling Language (SysML) [12]. The latter is based on
UML and provides developers with a possibility of modeling a
wider range of system parts - not only software, but also hardware
and requirements [13]. Such benefits are important, because allow
modeling various parts of the project in the same language, using a
known modeling environment. With the usage of model, the
project can be presented with less or more details. What is more,
views can be easily changed by using a hierarchy of diagrams.

The MDD approach can also allow generating an implementa-
tion of the whole system or its particular parts, based on the model.
This approach could be applied to the control software area, such
as presented by Thramboulidis et al. in [14]. It is worth mentioning
that generating implementation code can be addressed variously,
such as using SysML [15], Timed-Message Based Part State Graph
[16], or Petri Nets [17]. If necessary, UML model of the software part
of the industrial automation system can be extracted from the
SysML system model and refined to get the implementation code
[18]. The extensions of UML as specialized UML profiles for the
automatic generation of some software layers, e.g., machine-to-
machine communications [19], are also possible.

2.2. Standardized implementation

Apart from modeling, the standardized implementation is
another factor that could improve the software quality. One of very
popular standards in the control software area is IEC 61131-3 [20].
It is a worldwide standard, which defines a software structure and
five languages (textual, graphical, and mixed) for programming
industrial controllers, including PLCs. The control system is

! http://www.omg.org/mda/specs.htm.

composed of Program Organization Units (POUs), namely pro-
grams, function blocks, functions, and classes. Programs are
assigned to particular tasks, which are executed using resources,
such as controllers.

The IEC 61131-3 standard is popular and well-known in
industry. According to the survey conducted by Colla et al., the
IEC 61131-3 languages are used by about 40% of the MEDEIA project
partners [21]. Other ways of programming controllers involve the
IEC 61499 standard [22], as well as C, C++, Java, domain-specific
languages, and their combinations [23]. The software architecture
integrating IEC 61131-3 and IEC 61499 modules in DCS solutions
has been proposed in [24]. Its key benefit is reusing of the IEC
61131-3 software in the IEC 61499 projects. In such a case, the
round-trip engineering concept, described in the current paper,
could be utilized for automatic creation of interconnect elements,
such as Service Interface Function Block templates for IEC 61499
code, basing on the IEC 61131-3 part.

2.3. Precise testing

Implementation allows preparing the code related to control
algorithms. However, it is crucial to check its correctness, which
could be done by the precise testing. As stated by Hametner et al.
[25], the agile, systematic, and automation-supported testing is
necessary in case of control software. A proper testing process can
significantly increase a project quality by many ways, such as by
performing the regression testing that can simplify finding errors
introduced in existing project parts, while developing new
features. There are several methods of software testing, especially
related to the business one.

Unfortunately, the process of control software testing is
significantly less systematic. Currently, it is frequently performed
by manual testing [26]. What is more, developers need to verify
some specific aspects, characteristic to this kind of software, such
as hardware- and communication-related issues. Various methods
can be used to increase testing possibilities dedicated to control
software, including unit tests oriented to POUs [27,28], perfor-
mance tests measuring times of communication between devices
in real distributed control systems [29] or reliably simulated in the
Timed Colored Petri Nets formalism [30], as well as measuring
execution times of POUs [31]. Among other solutions, the
deterministic replay debugging approach exists that allows tracing
running programs on a controller and later analyzing their
execution off-line using the development environment [32].
Software implemented fault injection testing approach, tailored
for IEC 61131-3 programs, for automatic generation of test cases
has been also proposed [33].

3. Related work

The proposed RTE concept involves many research areas,
including modeling, configuration, testing, implementation, as
well as the round-trip engineering and synchronization between
various views of the project. What is more, these subjects can be
described for several domains of the software engineering,
including development of embedded and control systems. In this
section, only work related to RTE is presented, however, it is not
limited to the control software to present a wider view of the
current research in this area. More information about related work
regarding modeling and testing is shown in [15,28], while subjects
of performance testing are presented in [29,31].

Hettel et al. [34] present the round-trip engineering formal
definition and semantics of changes made in the target model. They
focus on partial and non-injective transformations. The authors
formally define the model, synchronization, round-trip transforma-
tion, as well as atomic and complex change. Some of the presented

http://www.omg.org/mda/specs.htm

Download English Version:

https://daneshyari.com/en/article/6923911

Download Persian Version:

https://daneshyari.com/article/6923911

Daneshyari.com

https://daneshyari.com/en/article/6923911
https://daneshyari.com/article/6923911
https://daneshyari.com/

