
BRCode: An interpretive model-driven engineering approach for
enterprise applications

Anderson Oliveira, Vinicius Bischoff, Lucian José Gonçales*, Kleinner Farias,
Matheus Segalotto
University of Vale do Rio dos Sinos (UNISINOS), 950, Unisinos Av. – Postal Address: 93.022-000, São Leopoldo, Rio Grande do Sul, Brazil

A R T I C L E I N F O

Article history:
Received 2 June 2017
Received in revised form 22 November 2017
Accepted 9 January 2018
Available online xxx

Keywords:
Interpretive MDE
Industry
Case study
Productivity
Profitability

A B S T R A C T

Many model-driven engineering (MDE) approaches have been proposed in recent studies. They claim to
improve software quality and productivity by raising the abstraction level at which developers work.
However, they often fall short of what was expected in terms of productivity, profitability, and Return on
Investment in real-world scenarios. This article proposes BRCode, which is an interpretive MDE approach
for fast-changing enterprise applications. A case study that involves the development of an Enterprise
Resource Planning (ERP) system enabled data collection based on 34 realistic scenarios in a Brazilian
company. This evaluation compared BRCode with a generative MDE (genMDE) approach. Our results
show that (1) genMDE required 93.75% more effort; and (2) genMDE and BRCode led to financial gains in
48% and 70% of the cases, respectively. On average, genMDE led to financial losses in most cases, while
BRCode roughly tripled financial gains; (3) BRCode had an ROI of 1.54, compared to 0.07 for genMDE,
which represents a difference of 93.37%. The results were encouraging and show the potential for using
BRCode to support software production companies in the turbulent business environment.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The development of enterprise applications has occurred in
increasingly unstable business environments in industry. Usually,
complex and fast-changing customer requirements, pressures of
shorter development cycles, and rapidly advancing information
technologies are ever-present characteristics of most mainstream
projects [1]. In this turbulent context, software production
companies seek to use generative or interpretive model-driven
engineering (MDE) approaches for improving software quality and
developer productivity [2,3]. In [4], Hailpern and Tarr highlight
that these benefits might be achieved by raising the abstraction
level at which developers work.

Generative and interpretive MDE approaches are functionally
equivalent. Generative MDE approaches (genMDE) aim at
transforming model-to-model or model-to-code, while interpre-
tive MDE approaches focus on interpreting models or meta-data
to produce run-time applications [2]. Both approaches claim to
improve software quality and productivity by raising the
abstraction level at which developers work. However, they often

fall short of what would be expected in terms of productivity,
profitability, and Return on Investment in real-world scenarios
[5]. Still, little has been reported about their effectiveness in
mainstream projects in industry. Even worse, current MDE
approaches have not provided stable architectures for supporting
software products in increasingly turbulent business environ-
ments. This instability goes beyond the limits of inconvenience
to developers and customers. The rework that is caused by
constant changes leads to a cost increase, which is often not
cheap.

Today, countless works report that the greater the number of
changes, the greater the likelihood that flaws and defects may arise
in software products [6]. Usually, the entire software architecture
must be changed to accommodate changes that would not affect
core requirements of an enterprise application. Despite this, MDE
approaches have been adopted, without empirical evidence about
their benefits or side-effects. For example, these approaches may
fail to increase the capability of the development team to develop,
ensure quality, and release enterprise systems more quickly, while
ensuring low development cost.

* Corresponding author.
E-mail addresses: andersonmo@edu.unisinos.br (A. Oliveira), viniciusbischof@edu.unisinos.br (V. Bischoff), lucianj@edu.unisinos.br (L.J. Gonçales),

kleinnerfarias@unisinos.br (K. Farias), msegalotto@edu.unisinos.br (M. Segalotto).

https://doi.org/10.1016/j.compind.2018.01.002
0166-3615/© 2018 Elsevier B.V. All rights reserved.

Computers in Industry 96 (2018) 86–97

Contents lists available at ScienceDirect

Computers in Industry

journal homepage: www.elsevier .com/ locat e/compind

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2018.01.002&domain=pdf
mailto:andersonmo@edu.unisinos.br
mailto:viniciusbischof@edu.unisinos.br
mailto:lucianj@edu.unisinos.br
mailto:kleinnerfarias@unisinos.br
mailto:kleinnerfarias@unisinos.br
mailto:msegalotto@edu.unisinos.br
https://doi.org/10.1016/j.compind.2018.01.002
https://doi.org/10.1016/j.compind.2018.01.002
http://www.sciencedirect.com/science/journal/01663615
www.elsevier.com/locate/compind


This article, therefore, proposes BRCode, which is an interpre-
tive MDE approach for fast-changing enterprise applications.
Software developers benefit from using the BRCode approach
typically when performing development and maintenance tasks,
such as rendering data-driven user interfaces, elaborating archi-
tectural design, and delivering fast, low-cost enterprise applica-
tions. For this, BRCode provides a set of key features that leverage
the productivity of software developers by reusing ever-present
features in enterprise applications. For example, by automatically
rendering user interfaces from meta-data, developers might invest
more time designing databases and studying the business rules
more carefully.

A case study that involves development of an Enterprise
Resource Planning (ERP) system enabled data collection based on
34 realistic scenarios in a Brazilian company. Our results show that
(1) genMDE required 93.75% more effort; (2) genMDE and BRCode
led to financial gains in 48% and 70% of the cases, respectively.
On average, genMDE led to financial losses in most cases, while
BRCode roughly tripled financial gains; (3) BRCode had an ROI of
1.54, compared to 0.07 for genMDE, which represents a difference
of 93.37%. The obtained results are encouraging and show the
potential for using BRCode to support software production
companies in volatile business environments. Moreover, this
study is the first to perform an empirical study that compares
generative versus interpretive MDE approaches in real-world
settings. The empirical knowledge and insights that are generated
may serve as a basis for improving the current MDE approaches.

The remainder of this article is organized as follows. Section 2
describes the generative MDE approach that is used in our case
study. Section 3 introduces the BRCode and describes its
architecture and main features. Section 4 describes how the
proposed approach was evaluated through an empirical study in
industry. Section 5 presents the collected results. Section 6
contrasts this study with the current literature. Section 7 presents
some conclusions and discusses future studies.

2. Generative MDE approach

MDE approaches [4] aim at shifting the development focus from
code to models. Existing MDE approaches are based on code
generation or model interpretation [2]. Approaches of the first type
use models and transformers to represent high-level concepts of
abstraction and carry out sets of transformations, respectively.
The transformers can convert abstract models into less abstract
models (i.e., model-to-model transformations) or directly into
source code that might be compiled (i.e., model-to-text

transformations) [7]. The source code that is generated from
models might cover most of the platform's complexity and
configuration details. Consequently, software developers end up
concentrating their time on problems that are related to business
rules, for example. MDE approaches of the second type use run-
time interpretation to produce software that conforms to the
model. Typically, these MDE approaches produce an interpreter,
which is embedded in the application.

We will mainly focus our attention on the description of the
generative MDE approach that was adopted by the Brazilian
company in which BRCode was evaluated (Section 4). To facilitate
understanding of how this technique was used, Fig. 1 presents an
overall scheme that shows its main elements, which are described
as follows:

1. Repository: Software developers produce a data repository
based on the customer's requirements and create domain
models from these requirements. These models are pivotal to
creating the database of the application that is under develop-
ment. The Repository can be seen Fig. 1(1).

2. Runtime: The application is created based on meta-data that
are present in the database. Operations, such as CRUD1 (Create,
Read, Update, and Delete), and business rules are defined.
Transformers generate tables at the database and data-access
objects to manipulate these tables. The Runtime component is
shown in Fig. 1(2).

3. Template: Software developers can personalize user interface
components, such as data masks, combo boxes, styles, object
positions, effects, data fields, and database calls. They can also
configure how the application manages the information inputs
and transforms the retrieved data into a readable format for the
clients of the application. The Template component is exhibited
in Fig. 1(3).

4. Code Generator: The application structure is generated based
on the template and run-time inputs. For this, the code
generator converts these inputs into source code. This compo-
nent, which is shown in Fig. 1(4), plays a central role in
supporting the generative MDE approach that is used in our case
study (discussed in Section 4).

5. Output Files: These files are responsible by representing the
generated files throughout the generative process. The applica-
tion structure is generated, including the entity, business rules,

Fig. 1. The generative MDE approach that was adopted by the company.

1 The four basic functions of persistent storage: create, read, update, and delete
(as an acronym CRUD).

A. Oliveira et al. / Computers in Industry 96 (2018) 86–97 87



Download English Version:

https://daneshyari.com/en/article/6923939

Download Persian Version:

https://daneshyari.com/article/6923939

Daneshyari.com

https://daneshyari.com/en/article/6923939
https://daneshyari.com/article/6923939
https://daneshyari.com

