
Writing and verifying interoperability requirements: Application to
collaborative processes

N. Daclina,*, S. Mallek Daclina, V. Chapurlata, B. Vallespirb,c

a LGI2P—Laboratoire de Génie Informatique et d’Ingénierie de Production Site de l’Ecole des Mines d’Alès, Parc Scientifique G. Besse, 30035 Nîmes cedex 1,
France
bUniv. Bordeaux, IMS, UMR 5218, F-33400 Talence, France
cCNRS, IMS, UMR 5218, F-33400 Talence, France

A R T I C L E I N F O

Article history:
Received 10 April 2015
Received in revised form 5 April 2016
Accepted 11 April 2016
Available online xxx

Keywords:
Interoperability requirements
Repository for interoperability
requirements
Requirements verification
Domain Specific Language

A B S T R A C T

Interoperability analysis is highly correlated with interoperability requirements, the ability to grasp,
structure, author and verify such requirements has become fundamental to the analytical process. To this
end, requirements must be: (1) properly submitted in a suitable and usable repository; (2) written
correctly by stakeholders with relevance to the studied domain; and (3) as easily verifiable as possible on
various models of the system for which interoperability capabilities are being requested. The purpose of
this article is to present both a structured repository for interoperability requirements and a Domain
Specific Language to write and verify interoperability requirements – within a collaborative process
model – using formal verification techniques. The interoperability requirements repository, which serves
to structure interoperability requirements and make them available, is itself structured through
abstraction levels, views and interoperability life cycle dimensions. Additional parameters detailing the
requested information and the known impacts of requirements on behavior of the studied system have
also been included. The Domain Specific Language provides the means for writing interoperability
requirements. Afterwards, these requirements � more specifically the temporal requirements � are re-
written into properties by transforming the temporal logic TCTL to allow for their effective verification by
using the model checker UPPAAL. The overall approach is illustrated in a case study based on a
collaborative drug circulation process. The article also draws conclusions and offers an outlook for future
research and application efforts

ã 2016 Published by Elsevier B.V.

1. Introduction

In the field of Systems Engineering (SE) [1], like in any
specialized engineering field (mechanical, Information Systems,
mechatronics, etc.), requirements engineering is a critical activity
dedicated to ensuring that a given system meets all expressed
requirements (i.e. original requirements corresponding to stake-
holder1 expectations and prescriptions, as well as requirements
induced by technical choices and decisions throughout the system
design phase).

For one thing, a requirement assigns, without ambiguity and in
a coherent manner, designers' tasks and constraints when devising
a solution. A requirement can be described using standards [2],
reference models and vocabularies [3]. However, the existing
vocabulary and requirement checklists commonly adopted in the
SE field tend to be understandable, yet perfectible and abstract
when taking a particular category of requirements into account
(e.g. non-functional requirements such as interoperability) or a
particular system (e.g. enterprises involved in collaborative
processes). For another thing, the interoperability concept [4]
remains a key factor of success for enterprises that share and
exchange processes, service data and resources in a collaborative
context; moreover, a number of existing works have sought to
characterize [5], implement [6] and assess this very concept [7–9].
Nevertheless, compliance with interoperability requirements
within a partnership is neglected and constitutes a challenge that
can provide: (1) structure to interoperability requirements, (2) a

* Corresponding author.
E-mail addresses: surname.name@mines-ales.fr (N. Daclin),

bruno.vallespir@ims-bordeaux.fr (B. Vallespir).
1 We have adopted the definition in [3] that defines a stakeholder as a “party

having a right, share or claim in a system or in its possession of characteristics that
meets said party’s needs and expectations”.

http://dx.doi.org/10.1016/j.compind.2016.04.001
0166-3615/ã 2016 Published by Elsevier B.V.

Computers in Industry 82 (2016) 1–18

Contents lists available at ScienceDirect

Computers in Industry

journal homepage: www.elsevier .com/ locate /compind

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2016.04.001&domain=pdf
mailto:surname.name@mines-ales.fr
mailto:bruno.vallespir@ims-bordeaux.fr
mailto:bruno.vallespir@ims-bordeaux.fr
http://dx.doi.org/10.1016/j.compind.2016.04.001
http://dx.doi.org/10.1016/j.compind.2016.04.001
http://www.sciencedirect.com/science/journal/01663615
www.elsevier.com/locate/compind


means for expressing requirements, and (3) the tools needed to
detect possible interoperability flaws.

The paper's focus is threefold: grasping and structuring
interoperability requirements, identifying the means of writing
such requirements, and performing verifications with formal
techniques [10]. The definition and verification of requirements
involves a collaborative process model for the purpose of
highlighting interoperability issues that may lead to dysfunctions
and interfacing problems from technical, organizational (including
human) and conceptual points of view. Following this brief
introduction, the problem statement and expected outcomes will
be presented. The relevant research work will be provided and
discussed in Section 3. Section 4 will then lay out the proposed
repository for interoperability requirements, featuring its dimen-
sions, their relationships and the steps allowing for its utilization.
Section 5 will offer a case study to illustrate the value of such an
approach; lastly, Section 6 will assess the approach and its possible
enhancements.

2. Interoperability requirements engineering

2.1. Problem statement and expected outcomes

Nowadays, a technical problem involving interoperability in the
fields of computer science and Information and Communication
Technologies [11] basically includes organizational aspects (i.e. are
the organization and its personnel able to collaborate efficiently?)
and conceptual aspects (do the data being exchanged share a
common semantics?) [12–14]. While initially focused exclusively
on data exchange and sharing, topics such as process interopera-
bility [15] are also receiving consideration at present. Moreover,
interoperability encompasses other aspects, like for instance the
interfacing issue, which extends to the autonomy and reversibility
of partners involved in the collaborative venture [16]. Interopera-
bility therefore is an important and mandatory capability to ensure
effectiveness in terms of: exchanging and sharing information,
products and resources; aligning and orchestrating collaborative
processes; and establishing decisions or policies. Among the
numerous relationships concepts (collaboration, cooperation,
coalition . . . ) and their associated time scale, interoperability is
for instance necessary in organizations such as Collaborative
Networked Organizations [61] which rely on collaborative
business processes (which can be coordinated, orchestrated or
else, synchronized) which themselves rely on interoperable
activities, resources, applications (through collaboration points

[62]) which themselves, for instance, exchange data. However, the
better the understanding and definition of interoperability, the
more complex its implementation, monitoring, control and
improvement. This statement actually leads to considering
interoperability requirements and their verification from a more
suitable perspective [17].

Requirements engineering practices must consider two major
aspects [18], namely the requirements management (access,
versioning, change, traceability, etc.) and the actual engineering
steps (elicitation, writing, refinement,). Requirements must be
checked, throughout a system's life cycle from design phase to
execution phase via the corresponding components and sub-
systems development phase [2], in order to prove expectations
have been satisfied and avoid problems (e.g. drift from expected
objectives, cancellation in worst cases). Similarly, some require-
ments must be verified during the actual operations phase and
until the system is decommissioned (or at least partially
redesigned). Requirements engineering therefore plays a major
role in the success or failure of a project [19,58], yet it is often
neglected by actors [20,59,60].

The requirements engineering process continues to be consid-
ered as time- and resource-consuming and without clear added
value. Stakeholders however should always keep in mind that as
more errors or omissions are carried to the upstream engineering
phases, the remedial costs in downstream phases will increase
(modification to the existing system) [21] (Fig. 1). On this figure, an
important aspect is the “cost to extract defects” in relation to the
different steps of development which shows that the more a defect
is identified belatedly, the more the correction cost is important.
The requirements engineering belongs to the field of the definition
of the problem so, it is beneficial to spend time defining clearly
what is expected in order to avoid (as much as possible) problems
in the later phases of development. Interoperability is a non-
functional requirement (NFR) to be incorporated throughout the
system life cycle [22] that affects both the functioning and quality
of system service yet that has remained neglected [23]. Hence,
interoperability requirements engineering is a key to handling,
improving and ensuring that interoperability capabilities are being
properly controlled.

First of all, a simple requirements baseline is unsuitable.
Requirements need to be combined into a structured reference, i.e.
a repository. The overall objective is to structure requirements for
them to be easily: (1) traceable throughout the system life cycle
(defined, verified, allocated, satisfied), (2) modifiable/removable/
addable, (3) usable for determining relevant solutions, and (4)

Fig. 1. Commited Life-cycle cost against time (extracted from [21] from Defense Acquisition University 1993).

2 N. Daclin et al. / Computers in Industry 82 (2016) 1–18



Download English Version:

https://daneshyari.com/en/article/6924004

Download Persian Version:

https://daneshyari.com/article/6924004

Daneshyari.com

https://daneshyari.com/en/article/6924004
https://daneshyari.com/article/6924004
https://daneshyari.com

