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a b s t r a c t

A novel and effective approach within the framework of the scaled boundary finite element method
(SBFEM) is proposed for the damage analysis of structures in three dimensions. The integral-type nonlo-
cal model is extended to SBFEM to eliminate the mesh sensitivity concerning the strain localization. In
order to reduce the number of degrees of freedoms (DOFs), an automatic mesh generation algorithm
using octree decomposition is employed to refine the localized damage process zone (DPZ), but no extra
effort is required to deal with hanging nodes existing between adjacent subdomains with different sizes.
A double-notched tension beam is simulated with two different meshes to illustrate the mesh-
independence. Three benchmarks are modelled to further verify the effectiveness and robustness of
the proposed approach. It is shown that the proposed computational approach is capable of accurately
capturing the damage evolution under complicated boundary conditions, and the results agree well with
the experimental observations and prior numerical simulations reported in the literatures.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Three-dimensional fracture modelling is a challenge topic in
numerical simulation. Various types of numerical method, such as
Finite Element Method (FEM) [1], Extended Finite Element Method
(XFEM) [2], Meshless/Meshfree Method (MM) [3,4], and Dual-
HorizonPeridynamics (DH-PD) [5], havebeendeveloped to simulate
the crack propagation with or without remeshing procedure con-
cerning the crack faces variation, based on fracture mechanics
(FM) and continuum damage mechanics (CDM) respectively.

CDM, initiated in the context of creep rupture [6], is widely used
to simulate the diffuse fracture process at both macroscopic [7,8]
and mesoscopic level [9]. CDM models use internal variables to
describe the gradual loss of material integrity due to the propaga-
tion and coalescence of microdefects. Compared with discrete
crack models, CDM has become a very competitive approach to
simulate the progressive failure of structures, which meticulously
handles the strong discontinuity of crack without the requirement
of remeshing.

Assuming that the stress at a specified point only depends on
the state variables at that point, a local damage model exhibits
an extreme sensitivity to the fineness and orientation of the spatial

discretization in a mesh-based formulation [7,9]. Such a patholog-
ical phenomenon is caused by the fact that the mathematical
description becomes ill-conditioned at a certain level of accumu-
lated damage. To overcome the deficiencies of the local damage
model, several types of nonlocal approaches have been proposed
during the last decades. Among many innovative developments,
the integral-type nonlocal model [7,10] and the gradient-type non-
local model [11,12] are two of the most prevalent model. The
integral-type nonlocal model involves a spatial smoothing function
to average the state variable of a point in a certain range of internal
length (also called characteristic length), whereas the gradient-
type nonlocal model takes the field in the immediate vicinity of
the point into account by enriching the local constitutive relations
with gradients of some state variables. Among the gradient-type
formulations, the implicit gradient enhancement [13] is found to
be more effective and suitable for numerical implementation than
the explicit version. Many works involving nonlocal damage simu-
lations have been reported, but only a few of them [14,15] covered
3D problems mainly because of the unacceptable computational
cost, especially on the solution of large nonlinear equilibrium
equations [15].

The scaled boundary finite element method (SBFEM) is a semi-
analytical method initiated by Wolf and Song in 1990s [16] for the
solution of wave propagation problems in unbounded domain. The
SBFEM combines some of the advantages of both the finite element
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method (FEM) and the boundary element method (BEM). In
SBFEM, only the boundary is required to be discretised and the
dimensions of the problem can be reduced by one, which in turn
reduces the data preparation and computational effort. But the
SBFEM does not require a fundamental solution as needed in
BEM. The ability to exactly satisfy radiation conditions at infinity
makes this method particularly suitable for modelling unbounded
media [17]. Owing to its capability of obtaining semi-analytical
stress intensity factors, the SBFEM is also an attractive method
for crack initialisation [18,19] and crack propagation modelling
[20,21]. Furthermore, the SBFEM is an extremely versatile
approach in terms of meshing, since: (1) there is no limitation of
the number of edges and vertices used for one subdomain, there-
fore, a series of polygonal subdomains with arbitrary shapes and
sizes constructed by topological algorithms, e.g. Delaunay triangu-
lation, can be used to discretise a domain in 2D with complex
geometry profiles [22]. The SBFEM can also been combined with
the isogeometric analysis to further increase the accuracy of the
solution with exact geometric representation [23]; (2) Without
any extra effort to deal with hanging nodes existing between adja-
cent subdomains with different sizes, quadtree structure in 2D and
octree structure in 3D can be employed to discretise the domain
with multi-level sizes of subdomains [24,25]. Consequently, the
refinement of local regions can be controlled by certain parame-
ters, and the transition between large-size subdomains and
small-size ones is fast and straightforward.

In this contribution we propose a three-dimensional nonlocal
approach for the damage analysis within the framework of SBFEM.
The integral-type nonlocal model combined with the isotropic
damage constitutive law is employed and extended to the scaled
boundary formulation in 3D. Some inherent advantages of SBFEM
are exploited for nonlocal damage modelling, including:

(I) In SBFEM, a problem domain can be discretised by a set of
subdomains with various sizes and different number of
edges. For damage analysis, in order to reduce the degrees
of freedom (DOFs), a multi-level mesh in octree structure
as illustrated in Section 4, is strongly recommended to mesh
the domain with localized damage process zone (DPZ).
Without any effort to deal with hanging nodes, this mesh
generation algorithm is completely automatic and notably
efficient. It should be pointed out that, octree structure is
also adopted in FEM owing to its ability to transition
between different cell sizes efficiently [26]. However, the
displacement incompatibility is inevitably introduced
within FEM by the hanging nodes presented between adja-
cent cells with different sizes. In order to deal with such a
problem, complex shape functions are required for cells with
hanging nodes [27] or further discretise of the cell with
tetrahedralised cells is necessary [28];

(II) For damage simulation, the size of subdomains used in DPZ
is especially small (typically around one-fourth to one-third
of the characteristic length) and the numerical accuracy is
mostly dependent on the damage estimation in DPZ. From
the numerical point of view, as the mesh is refined, the
results of simulation would converge to the accurate solu-
tion. It is reasonable to assume that the severity of damage
is uniform in one subdomain, and only the strain at the scal-
ing centre of the subdomain is used to compute the internal
variable. Consequently, computational efforts can be consid-
erably saved;

(III) Since the strain modes for each subdomain is only depend-
ing on the geometry of the subdomain, it can be computed
beforehand and utilized at each load step to obtain the strain
at an arbitrary point within the domain combined with
updated integral constants (see Section 5);

(IV) For small deformation situations, the location of each subdo-
main is assumed to be unchanged during damage process,
thus the weight function can also be calculated beforehand
and utilized to smooth the internal variable in each load
step.

The paper is organized as follows. The constitutive relation,
damage evolution law and integral-type nonlocal model are intro-
duced in Section 2. Section 3 presents a basic conception, equation
and solution of SBFEM for elastostatics in 3D. In Section 4, the auto-
matic mesh generation algorithm through octree decomposition is
illustrated. Section 5 interprets the details of damage formulation
using SBFEM. Four benchmark simulations are given in Section 6.
Conclusions are presented in Section 7.

2. Damage model for concrete

2.1. Constitutive law

For isotropic damage model, the following equation is used to
describe the stress-strain relation

r ¼ ð1�xÞDe ð1Þ
with the strain matrix e, the stress matrix r and the elasticity
matrix D. x is the damage variable which ranges from 0 to 1 at
complete damage.

In the damage theory, it is natural to work in the strain space
and, therefore, the arguments of the loading function include the
strain e and an internal variable j, which is controlling the evolu-
tion of damage [29]. The loading function usually has the form

f ðe;jÞ ¼ ~eðeÞ � j 6 0: ð2Þ
where ~e is a certain scalar named the equivalent strain to measure
the strain level, j is an internal variable that corresponds to the
maximum level of equivalent strain ever reached in the previous
history of the material up to the current state.

The internal variable j starts at a damage threshold level j0 and
is updated by the requirement that during damage growth f = 0,
whereas in unloading stage f < 0 and _j = 0. Damage growth occurs
according to an evolution law x =x(j), which can be identified
from the uniaxial stress-strain curve. The loading-unloading
conditions of inelastic constitutive models are often formalised
using the Karush-Kuhn-Tucker conditions [14]:

f 6 0; _j P 0; f _j ¼ 0: ð3Þ

2.2. Evolution of damage

The damage model described in the previous section contains
two relations which are specific for a material, i.e. the damage
evolution law x(j) and the equivalent strain definition. Two types
of evolution law are widely used for damage model. The first one is
linear softening model described as

xðjÞ ¼
0; if j 6 e0;

ef
ef�e0 1� e0

j

� �
if e0 < j < ef ;

1; if j > ef :

8><
>: ð4Þ

where e0 is the threshold of damage, and ef is a parameter affecting
the ductility of the response and related to the fracture energy.

The second one is exponential softening model which is defined
as

xðjÞ ¼
0; if j 6 e0;

1� e0
j exp � j�e0

ef�e0

� �
; if j > e0:

(
ð5Þ
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