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a b s t r a c t

In this article, a new explicit time integration method is developed to analyze linear and nonlinear prob-
lems of structural dynamics. Like recently developed explicit time integration methods, the new explicit
method can also control the amount of numerical dissipation in the high frequency range. The method is
explicit in the presence of the damping matrix, if the mass matrix is diagonal. Due to the unconventional
approximations of the displacement vector, the new method does not require evaluation of the initial
acceleration vector and other acceleration vectors. Linear and nonlinear problems of structural dynamics
can be tackled in a consistent manner, and iterative solution finding procedures are not required. Various
illustrative problems are used to investigate improved performance of the new explicit method.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, numerous implicit and explicit time integration meth-
ods were proposed for effective analyses of structural dynamics.
Many of the recently developed time integration methods possess
controllable numerical dissipations which are useful for eliminat-
ing the spurious high frequency mode in numerical solutions
[1,2]. In general, implicit methods are unconditionally stable when
they are applied to linear problems, while explicit methods are
only conditionally stable. Due to this fact, dissipative implicit
methods can be used for the high frequency filtering by adopting
considerably large time steps, and numerical dissipations in expli-
cit methods are usually used to improve quality of numerical solu-
tions in wave propagation and impact problems where small time
steps are required.

Other than stability conditions, the biggest difference between
implicit and explicit methods can be found in equation solving pro-
cedures. In implicit methods, the displacement and velocity vec-
tors of current time step are expressed in terms of both
unknown properties of current time step and known properties
of previous time steps. Naturally, implicit methods require factor-
izations of the effective stiffness matrices which are not diagonal to
solve the fully discrete equations.

In linear analyses, factorization of the effective stiffness matrix
is required only once, if the factorized effective stiffness matrix is

stored in additionally allocated memories and reused for next time
steps. In nonlinear analyses, however, the internal force vectors
and the stiffness matrices are often functions of unknown displace-
ment and velocity vectors of current time. Due to this reason, con-
struction and factorization of the effective stiffness matrix are
inevitable in each time step for implicit methods, and each time
step accompanies several times of iterations to obtain converged
nonlinear solutions. In large and complex nonlinear systems, this
may seriously limit solution refinements which can be done by
decreasing sizes of time steps, because factorization of a big effec-
tive stiffness matrix requires huge computational resources.
Details regarding recent development of implicit methods and
their computational aspects can be found in Refs. [2–5].

On the other hand, factorization of any matrices is not required
in explicit methods if the mass matrix is diagonal. Due to this fact,
explicit methods require much less computational effort to
advance a time step compared with implicit methods. In nonlinear
problems, the entries of the mass matrix are usually given as con-
stants, while the damping matrix and the internal force vector are
functions of the current displacement and velocity vectors. Even in
these situations, well designed explicit methods does not require
any factorizations of matrices, if the mass matrix is diagonal. Even
when the mass matrix is not diagonal, factorization of the mass
matrix is required only once, if the factorized mass matrix is stored
in additionally allocated memories and reused for next time steps.
Thus, explicit methods may be more efficient for analyses of large
nonlinear systems that require very small sizes of time steps for a
long duration of time.
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The Newmark method is one of the most broadly used non-
dissipative second-order accurate implicit method [6] for struc-
tural dynamic problems. After the introduction of the Newmark
method, numerous improved implicit methods were developed
based on it. One of the most famous methods developed based
on the Newmark method is the generalized-a method [7]. The
generalized-amethod of Chung and Hulbert can control numerical
dissipations of the high frequency limit in a simple and practical
manner. Recently, some implicit methods were developed based
on the time finite element approach. The collocation composite
time integration method of Kim and Reddy [5] and the generalized
composite method of Kim and Choi [4] are recently proposed
second-order accurate implicit methods based on the time finite
element method.

Good explicit methods can also provide very accurate numerical
solutions for very complicated nonlinear problems with much less
computational effort. The 4th-order Runge-Kutta method (the RK4
method) and the central difference method (the CD method) are
standard explicit methods which can be used for structural dynam-
ics. The CL method of Chung and Lee provided acceptably accurate
solutions for the elastic spring-mass nonlinear pendulum problem
[8]. The HC method of Hulbert and Chung [9], the TW method of
Tchamwa and Wielgosz [10,11], and the NB method of Noh and
Bathe [12] was developed for the analyses of wave propagations
and impact problems. Recently, the Soares method [13] was devel-
oped based on the weighted residual approach.

The explicit methods mentioned above have their own advan-
tages and disadvantages. The RK4 method was originally consid-
ered for general first-order ordinary differential equations. By
rearranging equations of structural dynamics as proper first-
order forms, structural dynamics can also be analyzed with the
RK4 method, but this method requires more than four times of
computational cost compared with the CD method. The RK4
method provides a considerably large amount of numerical
dissipation (the minimum spectral radius is about 0.5) in the high
frequency range when applied to the second-order linear single-
degree-of-freedom problem. The CD method is the simplest
non-dissipative explicit method. The CD method is provided as a
standard time integration method in many software packages,
but the CD method becomes implicit in the presence of the viscous
damping terms.

The CL method can maintain explicitness in the presence of
viscous damping terms. However, the amplification matrix of the
CL method has the spurious eigenvalue that may seriously
influence quality of solutions when large time steps are used.
The minimum spectral radius of the most dissipative case of the
CL method is about 0.52 when b ¼ 28=27 is used, and only less
dissipative cases are included in the CL method. Unlike the CL
method, the HC method can include a full range of dissipative
cases, however, the non-dissipative case of the HC method
becomes unconditionally unstable for any choices of time steps in
the presence of viscous damping terms. The amplification matrix
of the HC method also has the spurious root.

The TW method does not require computation of the initial
acceleration vector, and the method is very effective for wave
propagation problems. On the other hand, all dissipative cases of
the TW method are only first-order accurate, thus this method is
not suitable for long term analyses. The Soares method is the only
self starting method among the explicit methods mentioned above.
It has dissipation control capability and provides improved accu-
racy and extended stability limit for linear problems. However
the Soares method cannot be used for nonlinear analyses because
it directly manipulated the linear structural dynamics equations
in a weighted residual sense. The Soares method becomes only first
order accurate in the presence of physical damping terms, and
requires integral evaluation of the external force vector.

The NB method is probably the best performing second-order
accurate explicit method among the explicit methods mentioned
above. The NB method is developed based on the strategy similar
to the strategy used in the implicit Bathe method where two
sub-steps were combined to form one complete method. The NB
and Soares method share almost identical spectral characteristics
for the linear undamped single-degree-of-freedom problem. How-
ever, the NB method can be applied to nonlinear analyses in a con-
sistent manner, while the Soares method cannot. Unlike the Soares
method, the NB method requires computation of the initial accel-
eration vector, and the amplification matrix of the NB method
always has spurious root when viscous damping terms are
included.

In this work, we propose a new second-order accurate explicit
time integration method to tackle variety of linear and nonlinear
problems of structural dynamics in a consistent way. In designing
the new explicit method, we wish to accommodate the preferable
attributes of the existing explicit methods and exclude undesirable
attributes by manipulating proper numerical techniques and
methods. To this end, we consider unconventional interpolating
techniques, effective residual minimizing procedures, and effective
computational structures of recently developed explicit methods.

Discussions of this paper will mainly focus on the development
and analysis of the proposed algorithms. Through the interpolating
techniques used herein, we wish to exclude the spurious root of
the amplification matrix of the proposed explicit method. By
adopting unique computational structures of the Noh and Bathe
method, we wish to achieve extended stability limit and improved
spectral characteristics in the proposed method. By using the collo-
cation approach for the time discretization, we also expect that the
proposed method will be applicable to both linear and nonlinear
problems in a consistent manner. In addition to these improve-
ments, we also wish to eliminate computation of the acceleration
vectors (including the initial acceleration vector) in our explicit
method, which is already realized in the Soares method. Simple
and illustrative linear and nonlinear single- and multi-degree-of-
freedom benchmark problems will be used to investigate the linear
and nonlinear performances of the proposed explicit method.

2. An explicit time integration method

The influence of the spurious root of time integration methods
was studied in Ref. [14]. Even though the influence of the spurious
root is not that huge in some of recent time integration methods as
explained in Refs. [8,14], its presence is not completely acceptable
in a mathematical view point. At least, it should be minimized to
achieve good accuracy for the important low frequency modes.
Here, the time finite element method [15–18] based unconven-
tional Hermite type interpolating techniques are employed as a
remedy for this problem. Many of improved methods, such as
the HC, CL and NB methods [8,9,12], have the spurious roots, and
initial and other acceleration vectors should always be computed
and stored in each time step.

A practical way of designing explicit time integration methods
without a spurious root is to exclude time nodal acceleration vec-
tors from the time approximations of the displacement vector. This
can be done by using proper Hermite type interpolation functions
which are associated with time nodal displacement and velocity
vectors for the approximation of the displacement vector [2,19].
Then, the approximated displacement vector, and the first and sec-
ond time derivatives of the approximated displacement vector can
be substituted into the structural dynamics equations to obtain
approximated structural dynamics equations. The time discretiza-
tion can be completed by evaluating the approximated structural
dynamics equations at a certain point of time in a collocation
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