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a b s t r a c t

A computationally efficient framework has been developed for the elastoplastic analysis of compact and
thin-walled structures using a combination of global-local techniques and refined beam models. The the-
ory of the Carrera Unified Formulation (CUF) and its application to physically nonlinear problems are dis-
cussed. Higher-order models derived using Taylor and Lagrange expansions have been used to model the
structure, and the elastoplastic behavior is described by a von Mises constitutive model with isotropic
work hardening. Comparisons are made between classical and higher-order models regarding the defor-
mations in the nonlinear regime, which highlight the capabilities of the latter in accurately predicting the
elastoplastic behavior. The concept of global-local analysis is introduced, and two versions are presented
- the first where physical nonlinearity is considered for both the global and local analyses, and the second
where nonlinearity is considered only for the local analysis. The second version results in reasonably
accurate results compared to a full 3D finite element analysis, with a twofold reduction in the number
of degrees of freedom.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Metallic structures are ubiquitous in various fields of engineer-
ing, and it is thus important to understand their mechanical behav-
ior to optimize the design and predict failure. These structures
typically undergo plastic deformation when loaded past the yield
point, which necessitates a nonlinear analysis to determine the
elastoplastic behavior. Numerical simulation is an important tool
for such an analysis and is usually performed within the frame-
work of the Finite Element Method. However, accurate stress fields
are required when nonlinearities are involved, which often means
that a 3D finite element analysis has to be performed. Such 3D sim-
ulations can be computationally very expensive, especially for the
case of complex slender structures such as thin-walled beams. Sig-
nificant efforts have therefore been exerted over the past few dec-
ades to find suitable alternatives to full 3D analysis. A starting
point to achieve this is using analytical models, whereby intensive
numerical computations can be avoided. An analytical formulation

for inelastic beams was proposed by Timoshenko and Gere [1],
whose validity was limited to doubly symmetric cross-sections
and neglected shear deformations. An analytical solution to the
elastoplastic bending of beams was reported by Štok, for the case
of rectangular cross-sections [2]. The limitations of such models
restrict their use as a general design tool. Numerical tools thus
become essential for the nonlinear analysis of structures. Some of
the simplest numerical approaches include the plastic hinge
method where plasticity is assumed to be concentrated at a partic-
ular point [3–5].

A practical approach to numerically investigate elastoplastic
behavior is to use 1D (beam) or 2D (plate/shell) finite elements,
with enriched kinematics to better describe the deformation of
the 3D structure. For instance, Prokić used warping functions to
describe the out-of-plane deformations in thin-walled beams [6].
Some recent developments in FEM for thin-walled beams include
the Generalized Beam Theory (GBT), where cross-sectional defor-
mation modes are computed to describe the deformed configura-
tion. Elastoplasticity models developed using this formulation
were successful in detecting localized plasticity and cross-
sectional distortion in thin-walled structures without significant
computational effort [7–10].

An approach to further reduce the computational cost
associated with a nonlinear FE analysis is the use of global-local
techniques. In general, such a procedure consists of the analysis
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of the coarsely meshed global structure, followed by the analysis
over a finely discretized area of interest. The global solution is
applied to the local domain as boundary conditions to drive the
local analysis. Global-local techniques have frequently been used
in the past decades for refined linear structural analyses, when
computing power was significantly expensive [11–14]. The use of
such techniques to computationally intensive nonlinear analyses
is a natural progression, leading to several researchers proposing
various global-local methods to solve nonlinear problems. Noor
applied the global-local methodology to investigate the nonlinear
and post-buckling response of composite panels [15]. Duarte
et al. developed a generalized finite element method based on
global-local enrichment functions and applied it to investigate
problems with confined plasticity [16,17]. Gendre et al. presented
a nonintrusive global-local technique for structural problems with
local plasticity, using an iterative technique similar to [12], result-
ing in an exact structural re-analysis [18].

The objective of the current work is to predict the elastoplastic
behavior of slender structures in a computationally efficient man-
ner, by using a combination of the CUF and the global-local tech-
nique. In CUF, expansion functions are used across the beam
cross-section to enrich the kinematics of the beam element, which
results in 3D-like solutions at a reduced computational cost [19]. It,
therefore, constitutes a suitable framework to perform nonlinear
analyses. CUF has been recently extended to solve problems
related to geometrical nonlinearity [20,21], and physical nonlin-
earity [22]. The current work extends the previous work on elasto-
plasticity by incorporating global-local techniques within CUF to
carry out a refined analysis in the plastic zone.

The paper is organized as follows: a brief overview of CUF is
given in Section 2. The concept of global-local analysis and its
implementation in the CUF framework has been explained in Sec-
tion 3. Some numerical results have been presented in Section 4 to
validate and demonstrate the capabilities of CUF in performing
nonlinear analyses. Conclusions are drawn and presented in Sec-
tion 5. The Appendix A provides further details on the nonlinear
implementation.

2. The Carrera Unified Formulation

The CUF is a unified framework which can be used to develop
refined beam and shell/plate elements based on advanced struc-
tural theories. It uses expansion functions, Fs, to enhance the dis-
placements field, and hence to improve the kinematics of the FE
model. For instance, the displacement field of a beam model, as
shown in Fig. 1 can be described in CUF:

u ¼ Fsðx; zÞusðyÞ; s ¼ 1;2; . . . ;M ð1Þ

where Fsðx; zÞ is the expansion function across the cross-section, us

is the generalized displacement vector, and M is the number of
terms in the expansion function. The choice of Fs and M are

arbitrary and can be given as a user input. Two classes of expansion
functions have been used for the current work, and are briefly
described below.

2.1. Taylor Expansion (TE)

In this class of expansion functions, Taylor polynomials of the
kind xizi are used as the expansion function Fs, over the cross-
section. The order of the polynomial is denoted by N and is speci-
fied by the user. As an example, the second-order TE (N = 2, TE2),
containing 18 terms, is given below,

ux ¼ ux1 þ xux2 þ zux3 þ x2ux4 þ xzux5 þ z2ux6

uy ¼ uy1 þ xuy2 þ zuy3 þ x2uy4 þ xzuy5 þ z2uy6

uz ¼ uz1 þ xuz2 þ zuz3 þ x2uz4 þ xzuz5 þ z2uz6

ð2Þ

Classical beam theories such as Euler-Bernoulli Beam Theory
(EBBT) and Timoshenko Beam Theory (TBT) can be obtained as spe-
cial cases of the TE. In such a formulation, the unknown degrees of

freedom are the displacements and their derivatives until the Nth

order. A detailed explanation of the TE in CUF can be found in [23].

2.2. Lagrange Expansion (LE)

In this type of expansion, the cross-section displacement field is
modeled using Lagrange polynomials. In such a formulation, the
unknown degrees of freedom are purely the displacements in the
spatial coordinates, and no rotations are involved. As an example,
the displacement field of the 9-node bi-quadratic Lagrange ele-
ment (L9) is given as

ux ¼
X9
i¼1

Fiðx; zÞ � uxi ðyÞ

uy ¼
X9
i¼1

Fiðx; zÞ � uyi ðyÞ

uz ¼
X9
i¼1

Fiðx; zÞ � uzi ðyÞ

ð3Þ

where uxi ; uyi ;uzi and Fi are the nodal translational degrees of free-

dom and Lagrange interpolation function of the ith node, respec-
tively. Multiple LE elements can be used to locally refined the
displacement field. A detailed explanation of the LE in CUF can be
found in [24].

2.3. Finite element formulation

The stress and strain tensors are represented in vector notation
as follows:

r ¼ frxx;ryy;rzz;rxy;rxz;ryzg
e ¼ fexx; eyy; ezz; exy; exz; eyzg

ð4Þ

where e is the geometrically linear strain tensor. The linear strain-
displacement relation is then given by

e ¼ Du ð5Þ
where D is the linear differentiation operator expressed as

D ¼

@
@x 0 0
0 @

@y 0

0 0 @
@z

@
@y

@
@x 0

@
@z 0 @

@x

0 @
@z

@
@y

2
6666666664

3
7777777775

Fig. 1. An arbitrary beam element aligned with the CUF Cartesian reference system.
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