
A wideband fast multipole accelerated singular boundary method for
three-dimensional acoustic problems

Wenzhen Qu a, Changjun Zheng b, Yaoming Zhang a, Yan Gu c,⇑, Fajie Wang d

a School of science, Shandong University of Technology, Zibo 255049, China
b Institute of Sound and Vibration Research, Hefei University of Technology, Hefei 230009, China
cCollege of Mathematics, Qingdao University, Qingdao 266071, China
d International Center for Simulation Software in Engineering and Sciences, College of Mechanics and Materials, Hohai University, Nanjing 210098, China

a r t i c l e i n f o

Article history:
Received 26 February 2018
Accepted 1 June 2018
Available online xxxx

Keywords:
Singular boundary method
Fast multipole
Acoustic problem
Large scale

a b s t r a c t

In this paper, we present a new fast meshless method, called as wideband fast multipole singular bound-
ary method (FMSBM), for three-dimensional acoustic problems. The wideband FMSBM applies a partial
wave expansion formulation in low frequency regime and a plane wave expansion formulation in high
frequency regime. The present method is efficient and accurate for a wider range of frequencies
compared with the existing FMSBM approaches. In addition, the method avoids large number of element
integrations in the boundary element method for resolving the complicated acoustic model, which can
further reduce the computational complexity.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The boundary element method (BEM) has been regarded as a
powerful technique for the numerical solution of problems in com-
putational acoustics governed by the Helmholtz equation [1–6].
The use of the BEM has several advantages over the finite element
method (FEM) for problems of interest, especially in requiring only
the boundary discretization and the accurate modelling of infinite
domains [7–11]. The non-symmetric dense matrices appearing in
the solution of the traditional BEM restrict its application to
small-scale problems. To break through this bottleneck, the fast
multipole method (FMM) [12,13] was introduced to improve the
efficiency and reduce the memory requirement of the method
[5,14–18]. However, the BEM still encounters a time-consuming
issue of a large amount of numerical integrations arising from
the discretization of boundary integral equations for large-scale
problems [19].

During the past few years, many researchers have paid atten-
tion to the meshless methods without requirement of domain
and boundary discretization. The method of fundamental solutions
(MFS) [20] as a typical meshless boundary collocation approach is a
competitive alternative because of its simple mathematical expres-
sion and high precision. The MFS accelerated by the FMM and the
adaptive cross approximation has been applied to the simulation of

large-scale problems [21,22]. Unfortunately, the traditional MFS
encounters the problem of how to place the fictitious boundary
outside physical domain, especially for three-dimensional complex
boundary. To overcome this drawback, various numerical
approaches were developed, such as regularized meshless method
(RMM) [23], modified method of fundamental solutions (MMFS)
[24], and singular boundary method (SBM) [25]. Among these
approaches, the SBM is mathematically simple, easy-to-program,
and integration-free, and has been successfully applied to solutions
of various physical problems [26–34]. Thanks to these advantages,
the SBM approach is less time-consuming and more applicable for
complex-shaped three-dimensional domain problems than the
BEM. In addition, the SBM eliminates the fictitious boundary in
the MFS and becomes numerically more stable than the MFS
because of better conditioned interpolation matrix.

The SBM approximates physical variables by using a linear com-
bination of the fundamental solution of the governing equation,
and its solution also generates a full interpolation matrix as in
the BEM. To overcome highly computational cost of the system
of equations with the full matrix, Qu et al. [35,36] developed the
fast multipole singular boundary method (FMSBM) to reduce the
CPU times and memory requirements of the SBM when solving
three-dimensional large-scale acoustic problems. The CPU times
of the FMSBM in [35] called as traditional approach is increased
from OðNÞ (N is the dimensionality of the matrix) to OðN2Þ when
being used to solve the problems in high-frequency regime. The
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diagonal form FMSBM (DF-FMSBM) in [36] is unstable when being
applied to low frequency problems.

The FMMs based on the partial wave expansion [37] and the
plane wave expansion [38] fail in some way outside their preferred
frequency regime. In [13], Cheng et al. firstly constructed a wide-
band FMM by switching the two FMM approaches depending on
the level in the tree structure, which can deal with the above men-
tioned problems. After then, many researches [39–42] used the
wideband FMM to accelerate the BEM for the solution of acoustic
radiation, acoustic scattering, and acoustic shape sensitivity
analysis.

In this paper, we combine the wideband FMM and the SBM to
construct a wideband FMSBM for three-dimensional acoustic prob-
lems. The present approach combines advantages of the traditional
FMSBM [35] and the DF-FMSBM [36], which avoids the rapidly
increasing CPU times of the former for high-frequency regime
and instability of the latter for low-frequency regime. The wide-
band FMSBM has an OðNÞ efficiency if low-frequency computations
dominate and an OðN logNÞ efficiency if high-frequency computa-
tions dominate. The numerical results of acoustic pressures for sev-
eral numerical experiments clearly illustrate that the developed
methodology is accurate and efficient. The outline of this paper is
organized as follows. Section 2 provides the details of the wide-
band FMSBM formulations. Section 3 presents three numerical
experiments, including a scattering model from a dolphin with
no available analytical solution. Section 4 concludes the paper.

2. Formulations of the wideband FMSBM

2.1. The SBM formulations

In a homogeneous isotropic acoustic medium V 2 R3, the prop-
agation of time-harmonic acoustic waves can be described by the
Helmholtz equation

r2pþ k2p ¼ 0; p 2 V ð1Þ
where p is the acoustic pressure, and k denotes the wave number
expressed as

k ¼ 2pf=c ð2Þ
in which f is the frequency of acoustic wave, and c is the wave
speed. The boundary conditions are imposed as

pðxÞ ¼ p1ðxÞ; x 2 S1; ð3Þ

qðxÞ ¼ @pðxÞ
@nx

¼ q1ðxÞ; x 2 S2; ð4Þ

in which nx is the outward normal vector at point x, p1ðxÞ; q1ðxÞ are
known functions, and the whole boundary of the domain V consists
of S1 and S2. The acoustic pressures p for the radiation, scattering
and mixed models are respectively equivalent to the following
relationships

p ¼
pR ¼ pT ; for radiation;
pS ¼ pT � pI; for scattering;
pR þ pS ¼ pT � pI; for both;

8><>: ð5Þ

where the subscripts R; S; I; T respectively denote the radiation, scat-
tering, incident and total waves. In addition, the acoustic pressure p
for exterior acoustic wave problems has to satisfy the Sommerfeld
radiation condition [43] as follows

lim
r!1

r
@pðrÞ
@r

� ikpðrÞ
� �� �

¼ 0; ð6Þ

in which i ¼
ffiffiffiffiffiffiffi
�1

p
, and r ¼ kxk2.

For the SBM, the acoustic pressure and its normal gradient can
be approximated by using a linear interpolation of the fundamen-
tal solution of the Helmholtz equation, which are respectively
given as [35]

pðxiÞ ¼
Xm
j¼1
j–i

/jGðxi; yjÞ þ /iUi; i ¼ 1;2; . . . ;m; ð7Þ

qðxiÞ ¼
Xm
j¼1
j–i

/j

@Gðxi; yjÞ
@nxi

þ /iQ i; i ¼ 1;2; . . . ;m; ð8Þ

where fxigmi¼1 and fyjgmj¼1
are respectively collocation and source

points, m the number of boundary points (collocation or source
points), f/jgmj¼1 the undetermined coefficients, Gðxi; yjÞ the funda-

mental solution given by

Gðxi; yjÞ ¼
1
4p

eikkxi�yjk2

kxi � yjk2
; ð9Þ

and Ui;Qi the origin intensity factors expressed as

Ui ¼ 1
‘i

Z
Si

Gðxi; yÞdSy; ð10Þ

Qi ¼
j
2‘i

þ 1
‘i

Z
Si

@Gðxi; yÞ
@nxi

dSy; ð11Þ

in which ‘i denotes the area of Si, namely, influence domain of the
origin intensity factors Ui and Qi at source point xi, j is set to

j ¼ 1; for interior problems;
�1; for exterior problems:

�
ð12Þ

With the help of Eqs. (7) and (8), we can form a system of equations
as follows

AU ¼ b; ð13Þ
in which A is the interpolation matrix of the SBM, U the vector com-
posed by the unknown coefficients, b the boundary condition of
interested acoustic problems.

2.2. The wideband FMSBM formulations

In this section, we introduce the wideband FMM to accelerate
the matrix-vector product in Eq. (13), and the iterative solver of
generalized minimal residual method (GMRES) is then employed
to solve the system of linear equations of the SBM. The fundamen-
tal solution in the wideband FMSBM is respectively expressed as
into two parts: (1) a partial wave expansion formulation in low fre-
quency regime; (2) a plane wave expansion formulation in high
frequency regime. Details of the implementation of the developed
method are described as follows. Fig. 1 plots the source point, col-
location point, and points of multipole and local expansions in the

Fig. 1. Expansion points and the boundary nodes in the wideband FMSBM.
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