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a b s t r a c t

In this paper, a numerical formulation for the analysis of viscoelastic functionally graded materials under
finite strains is presented. The general constitutive modeling is described within the context of
Lagrangian and isotropic visco-hyperelasticity. The specific models selected are the compressible neo-
Hookean hyperelastic law, the Zener rheological model and the isochoric evolution law described in
terms of the rate of the viscous right Cauchy-Green stretch tensor. The material coefficients may vary
smooth and continuously along one direction according to the power law. The viscous update is per-
formed via the exponential rule. The main novelty of this paper is the use of gradually variable viscoelas-
tic coefficients in the finite strain regime.
Four numerical examples involving functionally graded materials and finite viscoelastic strains are

originally analyzed to assess the formulation proposed: a bar under uniaxial extension, a block under
simple shear, the Cook’s membrane and an elastomeric bridge bearing. Isoparametric solid tetrahedral
finite elements of linear, quadratic and cubic orders are employed. The influence of the material vis-
coelastic parameters on the mechanical behavior is analyzed in detail. Results confirm that mesh refine-
ment provides more accuracy and the present model can reproduce large levels of viscoelastic strains in
functionally graded materials.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Viscoelastic functionally graded materials (VFGMs) have been
widely used in engineering and industry. In these advanced com-
posites, the mechanical behavior is time-dependent and the mate-
rial properties vary gradually (smooth and continuously) over the
volume. This gradual variation avoids the occurrence of material
mismatch and stress discontinuities, which lead to delamination
problems in composite laminates, for example. Functionally
graded materials (FGMs) have many potential applications in
high-temperature environments, e.g. nuclear reactor components,
chambers of internal combustion engines, blade casing in thermal
power plants and spacecraft. Such composites usually exhibit
creep and relaxation viscoelastic behavior at high temperatures.
A representative material having such properties is the polymer
(or elastomer).

Although the damping mechanisms vary with temperature,
many elastomers are viscoelastic even at room temperature, for
instance. There are several works in the context of mechanical/
structural analysis of VFGMs under isothermal conditions. In the

work of [1], a new plate theory is developed considering the vis-
coelasticity of polymer foams. It is stated that, since the mechani-
cal properties vary over the thickness direction, the foam can be
approximately modeled as a FGM. As pointed out by [2], due to
their impact loading resistance and low weight, polymeric foams
are employed in automotives, spacecraft, submarines and airplane.
To investigate the dynamic behavior, those authors develop a
method for free vibration analysis of cylindrical panels composed
of VFGM. In [3], a dynamic analysis of multi-span VFGM nanopipes
conveying fluid is performed based on nonlocal elasticity theory,
showing that the concept of FGM also has applications in nan-
otechnology. Moreover, since the mechanical behavior is signifi-
cantly affected by the nature of spatial variation of material
properties, FGMs can be tailored for specific task performances.
Optimization design procedures involving VFGMs can be found,
for instance, in [4] and [5]. Another fact to be highlighted is that
cracks can eventually appear in FGMs under high temperatures.
Examples of fracture mechanics models devoted to VFGMs are
described in [6] and [7].

The usual modeling of FGMs involves the definition of a contin-
uous function that describes the gradual variation of the material
coefficients along one or more directions. The most common
functionally graded (FG) models are the power law (p-FGM), the
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sigmoidal law (S-FGM) and the exponential law (E-FGM) (see, for
instance, the work of [8]). Other FG models can also be adopted,
such as the two- and the five-parameter exponential laws, as well
as the Weibull exponential function, usually employed for carbon
nanotube (CNT)-reinforced laminated composites [9–11]. For
model calibration of VFGMs, the reader can be referred to the work
of [12], in which the generalized Kelvin model of arbitrary order is
used.

An important limitation of the abovementioned works involv-
ing VFGMs is the restriction to small strain regime. It is well known
that elastomers, for example, are usually highly deformable and
present nonlinear time-dependent behavior. The modeling of elas-
tomers under finite viscoelastic strains remains a major challenge.
The finite elastic response of polymers is often modeled within the
context of hyperelasticity, defining a scalar strain energy function
that can reproduce large strain levels and, in general, a nonlinear
material model (see, for instance, the works of [13] and [14]. The
inclusion of the viscoelastic behavior can be performed by setting
the time-dependence of the material properties (or the damping
response). Two common frameworks appear in the context of finite
viscoelastic strains: Convolution Integral Model (CIM), based on
convolution or hereditary integrals [15–17]; and Internal Variable
Model (IVM), defined in terms of hidden (or internal) strain history
variables (see, for example, the works of [18–23]). A comparison of
both frameworks is done in [24], which have concluded that it is
very difficult to decide which model is more appropriate for
specific applications. The present formulation belongs to the
second framework and can be considered as a particular case of
the finite strain models proposed in [18] and [19], in which the
thermal effects are considered, or the damage model suggested
in [25]. The model of this paper is also restricted to isotropic
materials. An example of general anisotropic visco-hyperelastic
model is found in the phenomenological formulation proposed
by [26].

The Finite Element Method (FEM) is employed to deal with gen-
eral structural problems involving FG visco-hyperelastic materials.
The element adopted is the isoparametric tetrahedral solid of any-
order based on positional description, successfully employed, for
instance, in [27–29]. In these works, it is demonstrated that full
integration scheme together with high order polynomials is very
effective to avoid locking problems even in complex structural
problems, without using logarithmic strains, corotational rates
and mixed formulations. The present work can be considered as
an extension of the homogeneous visco-hyperelastic formulation
proposed in [29] to the case in which the material has gradually
variable properties. Some alternative numerical formulations have
been recently proposed to solve the same problems analyzed in the
present work. One example is the Consecutive-Interpolation Proce-
dure (CIP) addressed in the works of [30–33], in which the nodal
average gradients are interpolated in a second step, resulting in
continuous nodal stresses without smoothing operation and with-
out increasing the number of degrees of freedom. Another interest-
ing approach is the Isogeometric Analysis (IGA) used, for example,
in the works of [34–36]. In that formulation, the geometry is
exactly described using CAD basis functions (e.g. NURBS) and fewer
control points (when compared to traditional FEM), resulting in a
high-order continuity and a simple mesh refinement.

According to the author’s bibliographic review, there are few
works in which finite visco-hyperelasticity is employed together
with the concept of FGM. In the study of [37], for example, a for-
mulation is proposed to analyze the mechanical behavior of trans-
versely isotropic FG rubbers under finite viscoelastic strains. It is
demonstrated that the proposed constitutive model agrees with
uniaxial experimental data of polyurea. However, that work is the-
oretical and no finite element analysis is performed for general
mechanical or structural problems. The purpose of the present

work, motivated by the lack of studies, is to perform a finite ele-
ment analysis of general 3D structural problems involving FG
visco-hyperelastic materials under isothermal and quasi-static
conditions. The development of this original formulation is essen-
tial mainly for elastomeric structures under finite strains and com-
plex boundary conditions. Two novelties of the present study can
be cited: the use of the FG concept to describe the gradual variation
of visco-hyperelastic coefficients; and the unique finite element
analysis of general structural problems involving VFGMs under
finite strain levels.

This paper is organized as follows. The kinematic formulation is
described in Section 2. The constitutive models, the evolution
equations and the FG law adopted are provided in Section 3. The
numerical solution procedure to deal with the nonlinear expres-
sions involved is given in Section 4. The illustrative numerical
examples used to validate the present methodology are described
in Section 5. Finally, the main conclusions of the work are high-
lighted in Section 6.

2. Kinematics

The present kinematic description is the same as the one
adopted in [29] and, thus, is briefly described.

The kinematics is based on the multiplicative split of the defor-
mation gradient F , similar to the Kröner-Lee decomposition
employed in finite elastoplasticity:

F ¼ @y
@x

¼ FeFv ð1Þ

where the vector fields x and y are the initial and the final
(deformed) configurations, respectively; and the subscripts ()e and
()v denote, in this order, the elastic and the viscous parts. The mul-
tiplicative decomposition (1) is also used in [19,20,23,38], for
instance. According to [20], the multiplicative decomposition of
the deformation gradient is conceptual and is not defined
experimentally.

The use of decomposition (1) leads to the concept of an inter-
mediate configuration, described by setting Fe ¼ I ) F ¼ Fv.
According to [24], this configuration can be used only for quasi-
static problems, which is the case of the present study. An alterna-
tive multiplicative decomposition of the gradient is found in [26],
in which the reversed form is adopted: F ¼ FvFe. As pointed out
by those authors, the intermediate configuration F ¼ Fv defined
in (1) is a stress-free (or relaxed) configuration only when internal
static equilibrium is reached or when time scales becomes infi-
nitely large (t ! 1). However, the difference between such
decompositions does not influence the present approach, since it
is not necessary to determine the individual components of the
gradients Fe and Fv (see Section 3).

The numerical approximation is based on positional description
and follows the usual FEM procedure, i.e., is based on nodal posi-
tions and Lagrange shape functions. Isoparametric solid tetrahedral
finite elements of any-order are employed. The degrees of freedom
are the current spatial positions of the nodes, instead of nodal dis-
placements. Further details on how to determine the deformation
gradient (1) based on the nodal positions can be found, for
instance, in the works of [27–29,39]. One should note that, in such
references, no strain enhancement is used and, although the anal-
ysis is geometrically nonlinear, no special treatment of element
distortions is carried out.

The strain measures adopted in this work are the symmetric
right Cauchy-Green stretch tensor and its invariants:

C ¼ FTF ¼ FT
vF

T
eFeFv ¼ FT

vCeFv ð2Þ

i1 ¼ trðCÞ ¼ Ce : Cv ð3Þ
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