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a b s t r a c t

A three-dimensional micropolar elasticity is cast in terms of the rigorous variational formulation. The dis-
crete approximation is based on hexahedral finite element using the conventional Lagrange interpolation
and enhanced with incompatible modes. The proposed element convergence is checked by performing
patch tests which are derived specifically for micropolar finite elements. The element enhanced perfor-
mance is also demonstrated by modelling two boundary value problems with analytical solutions, both
exhibiting the size-effect. The analyzed problems involve a cylindrical plate bending and pure torsion of
circular cylinders, which were previously used in the experimental determination of the micropolar
material parameters. The numerical results are compared against the analytical solution, and additionally
against existing experiments on a polymeric foam for the pure torsion problem. The enhancement due to
incompatible modes provides the needed improvement of the element performance in the bending test
without negative effects in the pure-torsion test where incompatible modes are not needed. It is con-
cluded that the proposed element is highly suitable for the numerical validation of the experimental
procedure.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Most of the materials are heterogeneous in general, with a
specific microstructure that can be represented at a scale particular
for the material itself. When this scale is very small, these materi-
als are considered as homogeneous. For such materials (e.g. met-
als), any microstructure detail is averaged leading to a
homogeneous continuum theory. Commonly used is Cauchy’s or
classical theory that is able to faithfully describe the material
behavior. However, when the microstructure scale becomes signif-
icantly large compared to the overall scale, assuming the homoge-
nized material, representation based on the classical theory fails.
Many newly developed engineering materials increasingly used
in engineering, such as fiber-reinforced composites, honeycomb
or cellular structured materials or modern polymers belong to
the last category. Due to their heterogeneity, such materials exhibit
a so-called size-effect phenomenon, which manifests in increased
stiffness of smaller specimens made of the same material, which
is not recognized in the classical continuum theory. Moreover, in
regions of high stress gradients, such as the neighborhoods of

holes, notches and cracks, the stress concentration factor as pre-
dicted by the classical theory is higher than that observed experi-
mentally. Even more discrepancies between the classical
continuum theory and the experimental testing may be observed
in dynamics, thermal analysis and fluid mechanics [1]. Due to such
anomalies, an alternative continuum model to accurately describe
the behavior of such materials is highly needed.

One such model, further discussed in this paper, is the so-called
oriented, or Cosserat or micropolar continuum. Namely, different
approaches are developed to study the multi-scale nature of the
material deformation, by taking into account additional effects
consistent with the observed behavior of such heterogeneous
materials. One such development accounting for microstructure
effects within the limits of continuum mechanics is introducing
higher order derivatives or the field gradients, such as the so-
called couple-stress or higher-order strain-gradient theories. An
alternative approach is introducing additional degrees of freedom,
such as micro-stretch or micro-morphic continuum theory [2], to
name only a few. Among such theories introducing additional
degrees of freedom, we further elaborate upon so-calledmicropolar
continuum theory, usually attributed to the Cosserat brothers [3].
They enriched the Cauchy’s theory by adding to the displacement
field an independent microrotation field, representing the local
rotation of a material point. The detailed exposition of the historical
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development of such theory can be found in [2], who named it the
micropolar theory of elasticity. The main goal of this work is to
contribute to the further development of such a more general the-
ory, by performing a detailed analysis of some important micropo-
lar boundary value problems.

The ability to include local rotation extends the modeling capa-
bilities, and allows us to take into account the intrinsic material
length-scale. However, the additional capabilities come at a cost.
In order to describe such a material, even when assumed to be lin-
ear elastic, homogeneous and isotropic, it requires six independent
material constants, in contrast to only two such constants for the
classical continuum. Moreover, the experimental determination
of these materials parameters is much more complex, since the
experimental verification and their corresponding conceptualisa-
tion and interpretation is far from straightforward. The work in
[4] is the first attempt to determine all six micropolar material con-
stants by developing experimental and analytical solutions to the
boundary value problem, but without particular success in the
experimental part since opposite trends between experiments
and analytical predictions have been observed. However, by subse-
quent refinement of Gauthier’s and Jahsman’s proposed procedure
[4], Lakes and his co-workers give the most significant contribution
to devising experimental procedures to determine the micropolar
material parameters in their analysis of bones [5–7], polymeric
foams [8–11] and metal foams [12], based upon measuring the
size-effect. As an alternative to the experiments performed by
Lakes and his co-workers, the micropolar parameter determination
can be based on various homogenization procedures which
replaces a larger-scale composite structure, or assembly of parti-
cles, by an effective micropolar continuum model. By assuming
that a homogeneous Cosserat material is the best approximation
of a heterogeneous Cauchy material, the six material parameters
of the micropolar continuum may be determined more easily
[13–16]. Several recent works of Wheel et al. [17–19] determined
the material parameters of highly heterogeneous materials on a
larger-scale by comparing the results of experiments and the finite
element simulation.

However, the experimental verification of a micropolar material
model still remains a great challenge, since a unified procedure to
determine the material parameters of micropolar continuum is still
lacking. We argue here that the key to understanding and develop-
ing more precise experimental procedures lies in the comprehen-
sive numerical analysis of the solution of the corresponding
boundary value problem. Such a comprehensive numerical analy-
sis should broaden the range of problems which may be solved
and open up new possibilities for the numerical simulation of
experimental set-ups. Therefore, the development of the finite ele-
ments of high quality is important for the future progress and
understanding of the micropolar continuum theory.

An early attempt to model the micropolar constitutive beha-
viour using the finite-element method is presented in [20] with
more authors working on numerical solutions of the micropolar
continuum using different finite elements in the linear analysis
(e.g. [21–24]). Furthermore, in addition to the standard finite-
element procedures, non-standard finite-element methods, such
as the control-volume-based finite-element method [25,17] have
been used to model micropolar finite elements.

The objective of this paper is to present one high quality ele-
ment for 3D simulations. More precisely, we propose a high-
performance three-dimensional micropolar hexahedral finite ele-
ment, using conventional Lagrange interpolation enhanced with
the so-called incompatible modes [26,27]. The proposed element
performance is tested against the analytical boundary value prob-
lems derived by Gauthier and Jahsman [4] and experiments per-

formed by Lakes and co-workers [5–12]. In the framework of the
classical elasticity the incompatible displacement modes are first
added to the isoparametric elements (e.g. see [26–29]). The main
benefit of incompatible modes in the classical continuum frame-
work is to avoid shear locking, as shown already in early 1970s
[30]. In bending of isoparametric 4-node 2D or 8-node 3D finite
elements, the absence of quadratic polynomials in the displace-
ment field approximation predicts the shear strain in pure bending
incorrectly. This is called the shear-locking effect [31]. Even with
higher-order elements producing better results in pure-bending
tests, the maximum possible reduction of computational cost is
always a worthwhile goal. The proposed solution is to enrich the
displacement interpolation of the corresponding element with
quadratic displacement interpolation modes, requiring internal
element degrees of freedom and leading to incompatibility of the
displacement field. When first introduced into 2D quadrilateral
isoparametric finite elements [30], the method was received with
skepticism in the finite element method research community,
since the displacement compatibility between finite elements
was at that time considered to be absolutely mandatory [32]. The
use of the incompatible-mode method for low-order elements in
both two- and three-dimensional problems is nowadays common,
leading to the most impressive performance not only in bending,
but also elsewhere, e.g. when modelling cracking [33,29] and
two-phase materials [34]. A detailed exposition of 1D, 2D and 3D
finite elements with incompatible modes in classical elasticity is
presented in [35].

In the framework of micropolar elasticity, the idea of enhancing
the displacement field of standard finite element is already recog-
nised in [36], where authors analyzed straight and curved beam
problems subject to shear loading. Only 2D problems have been
analyzed in [36] and the numerical results have not always con-
verged to the reference analytical solution. In the present work,
the high performance of the presented finite element is demon-
strated by successful analysis of both 2D and 3D problems. More-
over, our ability to deliver the solution that can converge to
reference values was confirmed for both bending and torsion.

2. Micropolar continuum model formulation

The fundamental relations of linear micropolar elasticity
applied to a homogeneous and isotropic material are outlined in
this section. We consider a continuous body B, of volume V and
boundary surface S in the deformed state under the influence of
external actions consisting of distributed body force pv and body
moment mv and distributed surface force ps and surface moment
ms. By generalising the Cauchy stress principle (see [37]), at an
internal material point X, with the position vector x, with respect
to a chosen spatial frame of reference at time t, we prove the exis-
tence of a second-order Cauchy stress tensor rðx; tÞ and an addi-
tional second-order couple-stress tensor lðx; tÞ .

2.1. Equilibrium equations

By analysing the static equilibrium of a differential volume dV
in the deformed state, we can obtain the force equilibrium
equation

rrþ pv ¼ 0; ð1Þ
where r is the differential operator nabla (e.g. see [29]), and the
moment equilibrium equation

lrþ aþmv ¼ 0: ð2Þ

2 S. Grbčić et al. / Computers and Structures 205 (2018) 1–14



Download English Version:

https://daneshyari.com/en/article/6924116

Download Persian Version:

https://daneshyari.com/article/6924116

Daneshyari.com

https://daneshyari.com/en/article/6924116
https://daneshyari.com/article/6924116
https://daneshyari.com

