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a b s t r a c t

This paper presents an evolutionary approach for the Robust Topology Optimization (RTO) of continuum
structures under loading and material uncertainties. The method is based on an optimality criterion
obtained from the stochastic linear elasticity problem in its weak form. The smooth structural topology
is determined implicitly by an iso-value of the optimality criterion field. This iso-value is updated using
an iterative approach to reach the solution of the RTO problem. The proposal permits to model the uncer-
tainty using random variables with different probability distributions as well as random fields. The com-
putational burden, due to the high dimension of the random field approximation, is efficiently addressed
using anisotropic sparse grid stochastic collocation methods. The numerical results show the ability of
the proposal to provide smooth and clearly defined structural boundaries. Such results also show that
the method provides structural designs satisfying a trade-off between conflicting objectives in the RTO
problem.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Topology optimization aims at finding the optimal layout of
material within a design domain for a given set of boundary condi-
tions such that the resulting material distribution meets a set of
performance targets [1]. Contrary to other disciplines within struc-
tural optimization such as size and shape optimization, in topology
optimization the material distribution is obtained without assum-
ing any prior structural configuration. This provides a powerful
tool to find the best conceptual design that fulfills the require-
ments at the early stages of the structural design [2]. Such a
method has been successfully applied to a wide range of problems,
from nanophotonics design [3] to aircraft and aerospace structural
design [4,5], which validates it as an effective tool for least-weight
and performance design.

Topology optimization methods can be broadly classified,
following [6], into density-based methods [7,8], level set methods
[9,10], phase field methods [11,12], topological derivative methods
[13,14] and evolutionary approaches [15]. The variants of Evolu-
tionary Structural Optimization (ESO) method [16] are some of
the approaches included in the last category, such as the

Bi-directional Evolutionary Structural Optimization (BESO) method
[17] and the Evolutionary Topology Optimization (ETO) method
using isolines [18–20] and smoothing boundary representation
[21]. These optimization methods are based on heuristic rules
including from simple hard-kill strategies (elements with lowest
strain energy density are removed) to bidirectional schemes (ele-
ments can be reintroduced if considered rewarding). Apart from
intuition, such methods can use standard adjoint gradient analysis
and filtering techniques to stabilize algorithms and results [22,23].

ETO methods have shown their ability for providing structurally
sound and aesthetically pleasing designs [24], which commonly
mimic nature’s own evolutionary optimization process. Such
methods normally assume deterministic conditions to integrate
function and form in a synergistic way [25], which obviates the dif-
ferent sources of uncertainty that may affect not only the safety
and reliability of structures but also their performance. These
sources of uncertainty include epistemic uncertainties, typically
due to limited data and knowledge, and aleatory uncertainties,
which are the natural randomness in a process, including manufac-
turing imperfections, unknown loading conditions, variations of
the material properties, etc. The introduction of uncertainty to
model realistic conditions in the design process has shown to be
a key issue for solving real-world engineering problems in several
fields, such as civil [26], automotive [27] and mechanical [28]
engineering, to name but a few. This fact, together with the
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development of probabilistic uncertainty propagation methods,
has fostered the interest for considering uncertainty within the
topology optimization problems, giving rise to the formulation of
several approaches embraced under the term of Topology Opti-
mization Under Uncertainty (TOUU) methods.

TOUU methods can be broadly classified, according to the rep-
resentation and treatment of uncertainties, into non-probabilistic
and probabilistic approaches. Non-probabilistic approaches [29]
do not require the statistical information about the uncertainty
of the phenomenon but a qualitative notion about its magnitude.
The worst-case approach [30,31], taking the form of a min–max
optimization problem, and fuzzy techniques [32], making use of
fuzzy set theory, are some of the methods included in this cate-
gory. The main drawback of these approaches is that they are often
too conservative, due to overestimation of uncertainty, and may
lead to optimal designs with poor structural performance. Con-
versely, probabilistic methods make use of a probabilistic charac-
terization of the uncertainty of the phenomenon. Several
formulations have been proposed in this context, which differs
from each other in the design of the objective function as well as
in the way the uncertainty is incorporated in the formulation.

Reliability-Based Topology Optimization (RBTO) aims at deter-
mining the best design solution with respect to prescribed criteria,
e.g. stiffness, weight and construction costs, while explicitly con-
sidering the unavoidable effects of uncertainty. This is done by
defining the constraints in terms of the probability of constraint
violation (probability of failure) [33]. Risk-Averse Topology Opti-
mization (RATO) [34,35] aims at minimizing a risk cost function
that quantifies the expected loss related to the damages, such as
excess probability. That is, whereas RBTO provides optimal designs
in terms of deterministic prescribed criteria with enough reliability
level, RATO provides the best design from the point of view of risk-
aversion [36]. Contrary to RBTO and RATO formulations, Robust
Topology Optimization (RTO) incorporates statistical moments of
the compliance to the objective function. The aim is to obtain opti-
mal designs which are less sensitive to variations in the input data.
Several developments based on RTO formulation have been devel-
oped to handle uncertainty in loading [37], material [38], stiffness
[39], geometry [40], boundary [41], and loading and material
[42,43]. For the specific case of uncertainty in loading, [44] [44]
and then [45] [45] showed that the RTO problem of minimizing
the expected compliance is analogous to a multiload-like problem
associated with a particular finite set of loading scenarios, which
depend on the mean and the variance of the perturbations [46].
Nevertheless, a very common practice is to use the weighted
sum of the first two statistical moments of compliance as the
objective function of RTO formulation [43,38,37]. This is the formu-
lation adopted in this work, where the expected value and the
standard deviation of the compliance are considered as a measure
of structural robustness.

Despite the fact that ETO methods have been successfully
applied to the design of many complex industrial deterministic
problems, they have not been used to the same extent to address
TOUU problems. Kim et al. [47] addressed the RBTO problem using
the ESO method and first-order reliability approach, as approxi-
mate probability integration method, to solve problems with
uncertainty in loading and material. Eom et al. [48] made use of
an improved hard-kill BESO method using a response surface to
compute the reliability index for addressing RBTO problems with
uncertainty in loading and material. The BESO method using a per-
formance measure, with probabilistic constraints formulated in
terms of the reliability index, was used by Cho et al. [49] to address
RBTO multi-objective problems including uncertainty in static
stiffness of bending, torsion, and natural frequency. The linear elas-
ticity hypothesis was exploited by Kanakasabai and Dhingra [50]
using superposition to efficiently handle reliability constraints in

RBTO problems with uncertainty in loading using the BESO
method. Recently, topology optimization of continuum structures
under probabilistic and fuzzy loads is addressed by Liu et al. [51]
using BESO method; in particular, the uncertainty of input data is
described using a cloud model that permits to transform the uncer-
tain topology optimization problem into a deterministic one with
multiple load cases.

In this work, an ETO method driven by an optimality criterion is
proposed for addressing the TOUU problem. This proposal includes
some of the ingredients of the iso-XFEMmethod [19]; in particular,
the use of implicit boundary representation by iso-contours, to
control the shape and topology variations during the optimization
process, and the extended finite element method (XFEM), to
improve the accuracy of finite element solutions on the boundary
of the design. The optimality criterion for the RTO problem is
derived from the stochastic linear elasticity formulation in its weak
form using a continuous adjoint method without being limited by
the discretization method used for the physical and the stochastic
domains. The ETO method uses an iterative approach to gradually
add and/or remove material based on the iso-contours of the opti-
mality criterion. The proposal permits to handle loading and mate-
rial uncertainties modeled by different probability distributions
and random field. To address the increment of dimensionality
induced by the random field, an anisotropic sparse grid stochastic
collocation method is used for the efficient computation of the
multidimensional integrals over the random domain. Compared
to density-based and level-set methods addressing TOUU prob-
lems, the proposal requires neither an initialization of the bound-
ary nor any regularization parameter, and it provides smooth and
clearly defined boundaries. Another important advantage of the
proposal is that it provides optimal solutions for different volume
fractions during the optimization process, which enables to effi-
ciently find a trade-off between performance and robustness for
different volume fractions during the topology optimization.

The remainder of the paper is organized as follows. The basis
and theoretical background of TOUU problem and the RTO formu-
lation are briefly reviewed in Section 2. Section 3 presents the
adaptive sparse-grid stochastic collocation method used for uncer-
tainty propagation and the efficient computation of the multidi-
mensional integrals over the random domain required by the
RTO formulation. The optimality criterion, used by the proposal
to reach an optimal solution, is derived for the RTO problem in Sec-
tion 4. Section 5 presents the proposed ETO algorithm driven by an
optimality criterion to address the RTO problem. Section 6 is
devoted to the numerical experiments used for validating the pro-
posed method. Finally, Section 7 presents the conclusion of the
proposed ETO method for RTO problems.

2. Topology optimization under uncertainty (TOUU)

The mathematical basis and fundamentals of TOUU problems
and the specific formulation of RTO, addressed in this work, are
presented below.

Let ðX;F ;PÞ be a complete probability space, and let D � Rd

(d ¼ 2 or d ¼ 3) be a bounded Lipschitz domain whose boundary
is decomposed into three disjoint parts @D ¼ CD [ CN [ C0. Con-
sider the linearized elasticity system under random input data

�5 �rðuðx;xÞÞ ¼ bðx;xÞ in D�X

uðx;xÞ ¼ �u in CD �X

rðuðx;xÞÞ � n ¼ �tðx;xÞ in CN �X

rðuðx;xÞÞ � n ¼ 0 in C0 �X

8>>><
>>>:

; ð1Þ

where x is the spatial variable, x 2 X are the random events, r is
the Cauchy stress tensor, b and �t are the body and surface forces,
�u is the prescribed displacement field, and n is the unit outward
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