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This article proposes a method for solving generalized eigenvalue problems on medium-power comput-
ers with a moderate memory in the particular context of studying fluid-structure systems with sloshing
and capillarity. This research was performed following many RAM problems encountered when comput-
ing the modal characterization of the system studied. The methodology proposed is one solution to
reduce RAM and time required for the computation, by using methods such as double projection or sub-
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1. Introduction

The algorithms for solving eigenvalue problems (including gen-
eralized eigenvalue problems for which one matrix is positive def-
inite) have received a very great attention this last 40 years from a
mathematical point of view (see for instance, [ 1-9]), for algorithms
adapted to parallel computation (see for instance, [10-18]), and
also for massively parallel computers (see for instance, [19-23]).
The majority of the efficient algorithms have been implemented
in a mathematical library for computers, parallel computers, and
massively parallel computers (see for instance, [24-26]).

This paper is devoted to the computation of very populated
sparse matrices involved in generalized eigenvalue problems that
have to be solved in the framework of fluid-structure problems.
Concerning the algorithms for solving these generalized eigenvalue
problems for which one of the two matrices is a positive-definite
matrix, the mathematical libraries cited before could, a priori, be
used (these algorithms are really efficient and are adapted to large
scale models using parallel and massively parallel computers).
Although these algorithms are efficient on mid-power computers

* Corresponding author.
E-mail addresses: quentin.akkaoui@univ-paris-est.fr (Q. Akkaoui), evangeline.
capiez-lernout@univ-paris-est.fr (E. Capiez-Lernout), christian.soize@univ-paris-
est.fr (C. Soize), roger.ohayon@lecnam.net (R. Ohayon).

https://doi.org/10.1016/j.compstruc.2018.04.007
0045-7949/© 2018 Elsevier Ltd. All rights reserved.

that we define as workstations with, for instance, 264 GB to 1 TB
for the RAM and 12-72 cores for the processors, we have encoun-
tered huge difficulties due to the limitation of RAM and also to
CPU-time consumption.

The framework of the developments proposed is the one rela-
tive to the computation of reduced-order bases (ROB) in order to
construct a reduced-order model (ROM) of a fluid-structure com-
putational model that corresponds to an elastic structure coupled
with an internal acoustic liquid with a free surface for which there
are sloshing phenomena and surface tension effects. This ROM is
not constructed using a global ROB associated with the full coupled
problem, but is constructed using the elastic modes of the struc-
ture with the added-mass effects, the acoustic modes of the liquid,
and the sloshing/capillarity modes. The interest of such a formula-
tion (see [27-29]) is to be able to select the modes that contribute
to the responses in the frequency band of analysis and also to be
able to implement the nonparametric probabilistic approach of
model uncertainties in each part of the coupled system for which
the level of uncertainties differs from a part to another one. It
should be noted that this formulation differs from the vibroacous-
tics problems (without sloshing and surface tension effects) for
which a ROM is constructed using a global ROB (see for instance
[30]). The difficulties encountered in the computation depends
on the type of modes that have to be computed. Concerning the
computation of the elastic structural modes, the mass matrix of
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Nomenclature

hk fluid layer height

h free surface elevation vector
nr number of acoustic dofs

ny number of sloshing dofs

ns number of structural dofs

p acoustic pressure vector

u structural displacements vector
Coy fluid-sloshing coupling matrix
Cpy projection of Cp,

Con approximation of Cp,

Chu fluid-structure coupling matrix
Cpu projection of Cpy

In (n x n) identity matrix

Kr acoustic stiffness matrix

K§ approximation of K¢

Kge free surface stiffness matrix

Ks structural stiffness matrix

M,y added mass matrix

Mg projection of M,

Mp acoustic fluid mass matrix

Mg free surface mass matrix

Mg, approximation of Mg,

Mg projection of My

M structural mass matrix

Ny dimension of initial sloshing subspace

Ng number of acoustic eigenvalues

Ny number of sloshing eigenvalues

Np dimension of subspace projection basis
Ny dimension of initial elastic subspace
Ns number of elastic eigenvalues

Rr subspace of R™ with P = 0 on free surface
bl i eigenvalue in Al

Ar acoustic eigenvalues matrix

/\;Ef reference acoustic eigenvalues matrix
JHref i _ eigenvalue in Al

Ay sloshing eigenvalues matrix

A;,Ef reference sloshing eigenvalues matrix
st ™ _ eigenvalue in AL

As elastic eigenvalues matrix

A reference elastic eigenvalues matrix
Of acoustic eigenvectors matrix

Dpy sloshing eigenvectors block matrix

Oy approximation of ®py

oref reference acoustic eigenvectors matrix
Dy sloshing eigenvectors block matrix

Yy sloshing eigenvectors matrix

‘I‘,E,ef reference sloshing eigenvectors basis
(0N elastic eigenvectors matrix

oLt reference elastic eigenvectors matrix
@}ff reference sloshing eigenvectors block matrix

the generalized eigenvalue problem is made up of the sparse mass
matrix of the structure in which is added the added-mass matrix of
the internal liquid (the added-mass matrix is a full matrix with
respect to the fluid-structure coupling dofs). Due to a RAM con-
sumption problem, the computation of the added-mass matrix
cannot be done as soon as the acoustic-stiffness matrix of the inter-
nal liquid is very populated. In addition, assuming that the added-
mass matrix has been computed, if the stiffness matrix of the
structure is also very populated, another difficulty arises for solv-
ing the generalized eigenvalue problem inducing the same type
of RAM consumption. The difficulties are exactly of the same nat-
ure for the computation of the sloshing/capillarity modes. Con-
cerning the computation of the acoustic modes of the internal
liquid, the difficulties are due to the generalized eigenvalue prob-
lem that involves two very populated sparse matrices, the acoustic
mass and the acoustic stiffness matrices. These difficulties are
detailed in Section 5 for which the fluid-structure computational
model has 2 x 10° dofs and requires, among others, to solve a lin-
ear equation for a positive-definite matrix that has 1.2 x 10® non-
zeros entries requiring about 10° bytes.

Confronted with this situation, we have thus revisited the for-
mulations in order to be able to solve the three generalized eigen-
value problems on a mid-power computer. The authors think that
the substantial efforts, which have been performed, could be of
interest for the community. It should be noted that the formula-
tions/algorithms proposed allow for computing a large scale
fluid-structure computational model on mid-power computers
but certainly, would allow for computing very large scale fluid-
structure computational models on high-power computers.

The computational model of the considered fluid-structure sys-
tem is constructed using the finite element method, assuming the
structure is linear elastic and the internal acoustic liquid is dissipa-
tive. The free surface of the liquid is submitted to an acceleration
field independent of time such as the gravitation field, inducing
sloshing phenomena. The surface tension effects are taken into
account.

In the particular context of this fluid-structure interaction prob-
lem for which sloshing and surface tension effects are taken into
account, many research have been performed (see for instance,
[27,31-33]). In this paper, the formulation used is the one pre-
sented in [28,29] for which the adapted reduced-order model
(ROM) has been evoked and is more detailed hereinafter. The con-
struction of the ROM requires a modal characterization of the dif-
ferent parts of the fluid-structure system. It consists in projecting
the computational model using three ROB’s that are computed by
solving three generalized eigenvalue problems. The modal charac-
terization of the structure is obtained by computing the elastic
eigenmodes of the structure taking into account the influence of
the internal acoustic liquid in order to assure a fast convergence
with respect to the number of elastic modes retained in the
ROM. The modal characterization of the internal acoustic liquid
is obtained by computing the acoustic modes with a free surface
on which the pressure is zero. Finally, the modal characterization
of the free surface in presence of surface tensions is obtained by
computing the sloshing modes that involve the internal acoustic
liquid. The finite element meshes of the fluid-structure system that
will be considered in Section 5 have a large number of dofs and a
high connectivity, inducing very populated sparse matrices and
consequently, leading us to an impossibility to construct the matri-
ces and to compute the generalized eigenvalue problems on mid-
power computers using the most adapted algorithms available in
the mathematical libraries such as those proposed in Matlab.

Concerning the choice of the formulation, two possibilities can
be envisaged. For computing the structural elastic modes with
the added-mass effects or for computing the sloshing modes with
capillarity effects, a first formulation could be based on the use of
iterative algorithm for solving linear matrix equation (relative to
all the physical dofs) for a very populated matrix and for a large
number of right-hand side members. A second formulation would
avoid to solve such a linear systems of equations in high dimension
by using a double projection method, also known as the Rayleigh-
Ritz method in the framework of eigenvalue problems. An analysis
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