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This paper proposes a new approach to solve sparse linear saddle-point systems arising in large scale
parameter estimation approach using energy functionals. The constraints of those systems involve kine-
matic constraints and sensors ones. The approach is based on a double projection of the generated saddle
point system onto the nullspace of the constraints. The first projection onto the kinematic constraints is
proposed as an explicit process through the computation of a sparse null basis. Then, we detail the appli-
cation of a constraint preconditioner within a Krylov subspace solver, as an implicit second projection of
the system onto the nullspace of the sensors constraints. We further present and compare approxima-
tions of the constraint preconditioner. The approach is implemented in a parallel distributed environ-
ment. Significant gains in computational cost and memory are illustrated on several industrial

applications in comparison to direct solvers.
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1. Introduction

It is essential for industry to understand the mechanical behav-
ior of materials to ensure their structural performance and opti-
mize their availability. Some structures may be exposed to high
levels of vibration which requires a deep understanding of the
physical phenomena involved and the realization of numerical
models to assess the corrective solutions.

In order to diagnose the origin of the problem, test campaign is
first and foremost performed on structures. A numerical model is
then built to reproduce the nominal behavior and evaluate pro-
posed solutions. Its adequation is quantified during the stages of
verification and validation and experimental information is com-
bined with numerical simulations to fulfill the a priori knowledge
of structural behavior to propose industrial solutions. These steps
above describe in fact an inverse problem of model properties
identification. It generally ends up being formulated as an opti-
mization problem, namely seeking the minimum of a cost function
that quantifies in a certain metric the difference between a model
prediction and the available data [2]. Among the different existing
approaches for building suitable cost function, one is based on
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energy functionals. This approach has shown its efficiency and
has appeared to be an appropriate indicator of the quality of a
model with respect to measured data. Actually, it is able to locate
erroneously modeled regions in space [6,20], robust even in pres-
ence of noisy data and provides good convexity properties of cost
functions [19].

For most of the industrial and application cases, and in the par-
ticular scope of interest of this work, the study of structural
dynamic behavior is performed by means of Finite Element (FE)
method. Adopting the above approach in a FE framework leads to
a large and sparse linear system which, as recommended by indus-
trial guidelines of this work, is formulated symmetrically. This
symmetric formulation generates a sparse and large linear system
of equations equivalent to a saddle-point or Karush-Kuhn-Tucker
(KKT) system. It arises similarly in many applications of scientific
computing, like constrained optimization and incompressible fluid
flow. A review of the most known resolution techniques is found in
[7].

Many reasons explain why energy-based functional approach is
less often implemented. Actually, the special structure of the
resulting linear system mentioned above is a difficult challenge
especially for mechanical softwares which are more developed
for FE-like matrices. These softwares mainly using direct methods
and factorization, are often used for their robustness and the mod-
erate storage requirement of mechanical problems. However,
when applied on these symmetric indefinite matrices, they are
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more than often inefficient due to a significant growth factor and a
high fill-in. The repeated use of the energy-based functional
approach for model updating [16] or robust expansion applica-
tions, leads then to a huge computational cost. Many techniques
based on model reduction have accelerated calculations by down-
grading the error localization properties [9,13]. Here, wishing to
keep these localization properties, the problem is solved without
further approximation.

Also, the implementation of energy-based functional approach
within recent work [22] shows that direct solvers used in mechan-
ical softwares fail to solve efficiently the inverse problem associ-
ated to an industrial structure model with more than 10° dofs
and few hundreds of measurement points and provide a huge com-
putation cost for a single calculation.

Many existing resolution methods are used to solve the saddle-
point problems, a review of the most known resolution techniques
is found in [7]. While most used solvers in mechanical studies are
coupled (or global) ones which enables to solve the whole system
at once and then to compute the unknowns simultaneously, effi-
cient saddle point solvers are generally block-wise designed using
iterative approaches as will be shown in (2.3).

This paper proposes another class of solvers, able to handle the
studied sequence of saddle point linear systems with negligible
memory cost. It subsequently studies the adequacy of a projec-
tion onto the nullspace of the constraints to address problems
of industrial relevance. It also contributes to the research area
related to algebraic block preconditioning. The proposed approach
is made possible by making a distinction in the existing con-
straints. While kinematic constraints are fixed linear and affine
conditions, the constraints related to sensors degrees of freedom
are varying along the sequence of saddle point linear systems.
This distinction has dictated the type of projection of each kind
of constraints.

The article is organized as follows. The inverse problem of
energy functional approach is introduced in Section 2. The struc-
ture of the resulting system is also described, and existing iterative
saddle point solvers are presented. The research results of Section 3
are the main contribution of the paper where a new algorithm is
introduced. Section 4 is devoted to numerical results based on aca-
demic and industrial applications. Finally, concluding remarks end
the paper in Section 5.

2. Background

A common approach for estimating model parameters is to
solve a constrained optimization problem by minimizing the dis-
tance between measured and computed responses. Energy func-
tional approach is based on a cost functional that measures
model error, in terms of a norm of energy.

2.1. The constrained optimization problem

Let us consider a structure and its FE model with n degrees of
freedom (dofs), where [M] € R™" and [K] € R™" are the so-called
mass and stiffness matrices respectively. We know that each cou-
ple of eigenvalue and eigenvector (w, ) of the finite element
numerical model satisfies

(IK] = ?[M)){¢} = 0.{¢} # 0. (2.1)

Due to modeling assumptions, simplifications, misconceptions
and possible model errors, numerical eigencouples may not corre-
spond to the real dynamic behavior of the structure. We use a set of
unknown model parameters 6 that parametrize the mass matrix

[M] = [M(0)] € R™" and the stiffness matrix [K] = [K(0)] € R™",
and consequently couples of eigenvalue and eigenvector (wy, @,),
in order to modelize these uncertainties and mis-knowledge.

The identification problem aims to find this set of parameters 6
such that each couple of numerical eigenvalue and eigenvector
(wy,¢@,) is close to the correspondent experimental one
(Wexp, Pexp) Where ¢, is only defined on s <« n sensors.

The energy functional is constructed using two fields:

e Let {¢} be interpreted as the best estimation of the eigenmode
¢,, minimizing the distance with the measured eigenmode ¢,,,
at the pulsation eyp.

e Let {y/} be an error field that expresses the error in stiffness in
the model which facilitates identifying the best set of parame-
ters 0 that enables a satisfactory reproduction of the measure-
ments through successive iterations. It satisfies:

KO} = (KO] - 02, MO]) {0} (22)

The energy functional consists of the elastic potential energy of
the error term y and augmented by the distance between mea-
sured and computed eigenmodes:

eal(9), (W1 101) = 5 (0" KO}
o= () — {9} TIK
X (H{QD} - {¢’exp}) (23)

where r € [0,1] is a weighting scalar, II is a projection operator
from the space of the numerical finite element model to the obser-
vation space and K, € R™ is a symmetric positive definite scaling
matrix. Although the choice of K. is not a priori defined, it is usu-
ally chosen to be dimensionally consistent with the induced
energy norm and can be obtained, for instance, by using the Guyan
reduction on the observation space. More details about K, are
available in [2].

In addition to the constraint (2.8), there are kinematic linear
constraints which are described as follows

[C{e} =0, [Cl{y}=0, (24)

where [C] € R™" represents m linear relations coming from the
kinematic boundary conditions and modeling constraints. It is sup-
posed to be of full row rank m. If it is not the case, we find either
that the problem is inconsistent or that some of the constraints
are redundant and can be deleted without affecting the solution
of the problem. Moreover, the matrix [K] is supposed to be positive
definite on ker([C]), which ensures that the constraints lock the rigid
body motions of the structure.

The experimental measurements here play the role of Tikhonov
regularization parameters [32,10], which facilitates the reconstruc-
tion of unobserved fields. The parameter r makes it possible to con-
trol the importance of regularization in the cost function. It
represents the confidence that we have in the identified eigenvec-
tors. Actually, the more the coefficient r tends to 1, the more the
motion of identified solution degrees of freedom corresponds to
the motion of the experimental degrees of freedom. On the con-
trary, the more r tends to O, the more the motion of the identified
solution degrees of freedom tends towards the motion of the
numerical model degrees of freedom. In the many publications
dealing with energy-based approaches for identification problems,
few provide a real justification for the value of r, and choosing its
suitable value is not trivial. Nevertheless, the value of r=0.5
makes the cost function robust with respect to the noise as
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