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a b s t r a c t

In this paper, we propose a new 4-node 2D solid finite element enriched by interpolation cover functions.
Instead of using the bilinear shape functions of the standard 4-node finite elements, piecewise linear
shape functions are adopted as the partition of unity functions to resolve the linear dependence problem;
thus, rank deficiency of the stiffness matrix is not observed. Higher order cover functions can be arbitrar-
ily employed to increase solution accuracy without mesh refinements or introduction of additional nodes.
The new enriched 4-node element also shows good convergence behavior, even when distorted meshes
are used. Herein, we investigate the linear dependence problem of the new enriched element. Its conver-
gence, effectiveness, and usefulness are demonstrated through the solution of four plane stress problems:
an ad hoc problem, a tool jig problem, a slender beam problem, and an automotive wheel problem.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The finite element method has advantages in that it can effec-
tively consider complicated geometries using meshes, and has
been widely used for solid, fluid, and multi-physics problems.
However, the accuracy of solutions depends on the quality of the
meshes used, and in engineering practice, it takes considerable
effort to obtain a suitable mesh. Also, mesh refinements are often
necessary to secure reliable solutions with required accuracy when
non-smooth, near-singular, and high-gradient solutions are sought
[1,2].

In order to obtain accurate solutions, special enrichment func-
tions incorporated within finite element formulations has been
developed, where the solution space is built by multiplying the
partition of unity functions by local approximation functions. The
mathematical background of this technique was established by
Babuška and Melenk [3]. Belytschoko and Black [4], Moes et al.
[5], Dolbow et al. [6] and Daux et al. [7] applied such enrichment
functions to account for discontinuities and singularities in solid
mechanics problems, and Ham and Bathe [8] successfully incorpo-
rated harmonic functions to analyze wave propagation problems.
The enriched finite element method based on the use of the inter-
polation cover functions was also studied for analysis of solids and
shells by Kim and Bathe [9] and Jeon et al. [10].

In the enriched finite element methods, the shape functions of
the standard finite elements and polynomial functions have been
widely adopted as the partition of unity functions and as local
approximation [3–6] (or interpolation cover [8–10]) functions,
respectively. The methodology is simple and effectively provides
overall solution improvement in the sense of the p-version of the
finite element method, without introducing additional nodes. Fur-
thermore, adaptively applying interpolation cover functions to
local areas where the solution needs to be improved can be easily
implemented. However, when both the partition of unity functions
and interpolation cover functions consist of polynomials, the linear
dependence (LD) problem occurs for some topologies. In this case,
the global stiffness matrix becomes rank deficient even though the
essential boundary conditions are properly applied. An et al.
[11,12] investigated the LD problem in 2D triangular and quadrilat-
eral elements, and in 3D hexahedron and tetrahedral elements.

There have been various attempts to resolve the LD problem.
Babuška and Melenk [3] designed partition of unity functions in
order that the LD problem could be overcome in 1D analysis. Oden
et al. [13] suggested the elimination of linear polynomial terms in
the local approximation functions. Duarte et al. [14] and Stouboulis
et al. [15] showed that such treatments are not enough to avoid the
LD problem; then adopted special equation solvers in 2D and 3D
analyses. Tian et al. [16] studied the rank deficiency (RD) of the glo-
bal stiffness matrix of enriched 2D solid elements, and found that
suppressing enriched degrees of freedoms (DOFs) corresponding
to enriched functions at the essential boundary is effective for 2D
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analysis with 3-node triangular elements. Tian et al. [17,18] also
proposed a method to construct interpolation functions using a
least squares process to resolve the LD problem. It has been well
known that the LD problem can be avoided by applying the flat-
top partition of unity functions, although the construction of the
functions is not easy [19–22].

In this paper, we aim to develop, in a simple and effective way, a
4-node 2D solid finite element enriched by interpolation covers,
which is free from the LD problem. Therefore, the resulting ele-
ment makes it possible to utilize the 4-node element meshes most
widely used for 2D solid mechanics problems. A set of simple
shape functions (piecewise linear shape functions) is newly pro-
posed for the enriched 4-node element. By adopting the shape
functions, the LD problem is automatically resolved. The new
enriched 4-node element shows good convergence behavior even
when distorted meshes are used. In addition, the solution accuracy
could be improved without mesh refinement or the use of higher
order elements.

In the following sections, we first briefly review the enriched
finite element method, and the shape functions of the new
enriched 4-node element are derived. We then analytically and
numerically investigate the LD problem using various mesh
patterns. Through some illustrative examples, we show the conver-
gence and computational efficiency of the new enriched 4-node
element proposed in this study. Also, the adaptive use of interpola-
tion covers is demonstrated. Finally, conclusions are drawn.

2. Finite element procedure enriched by interpolation covers

Enriching the finite element procedure, in principle, is straight-
forward and has a well-established mathematical background [3].
The solution space of the standard finite element method can be
enriched without remeshing or introducing additional nodes
[4–10,23,24]. In addition, using enrichment functions suitable for
a particular problem, the solution accuracy can be effectively
improved.

We here briefly review the formulation of the 4-node 2D solid
finite element enriched by interpolation covers [3,9–11,16] and
propose a set of shape functions for the new enriched 4-node
element. In this study, linear and quadratic polynomials are con-
sidered as cover functions, leading to the enriched elements with
quadratic and cubic displacement interpolations, respectively.
The same principle can be directly adopted for generating enriched
elements with higher order interpolations.

2.1. Formulation of the enriched 4-node solid finite element

The geometry interpolation of the enriched 4-node 2D solid
finite element is identical to that of the corresponding standard
finite element

xðr; sÞ ¼
X4
i¼1

hiðr; sÞxi with xi ¼ ½ xi yi �T ; ð1Þ

where xi is the position vector of node i in the global Cartesian coor-
dinate system shown in Fig. 1(a), and hiðr; sÞ are the bilinear shape
functions of standard isoparametric procedure corresponding to
node i defined in the natural coordinate system in Fig. 1(b)

h1ðr; sÞ ¼ ð1þ rÞð1þ sÞ=4; h2ðr; sÞ ¼ ð1� rÞð1þ sÞ=4;
h3ðr; sÞ ¼ ð1� rÞð1� sÞ=4; h4ðr; sÞ ¼ ð1þ rÞð1� sÞ=4: ð2Þ

The 2D shape functions, hi satisfy the partition of unity require-

ment,
P4

i¼1hi ¼ 1. Therefore, the displacement interpolation of the
enriched 4-node finite element is given by multiplying the shape

functions by cover functions defined in the cover area Ci as follows
[3,9,10,25]:

uðr; sÞ ¼
X4
i¼1

hiðr; sÞ~ui with ~ui ¼ ½ ~ui ~v i �T ; ð3Þ

in which ~ui and ~v i are cover functions corresponding to the
displacements in the x- and y-directions, respectively, and the cover
Ci is the union of elements attached to node i (see Fig. 2).

The cover functions are given by

~ui ¼ piðxÞuu
i ; ~v i ¼ piðxÞuvi in Ci ð4Þ

with

piðxÞ ¼ ½1 ni gi n2i � � � gd
i �; ni ¼

ðx� xiÞ
vi

; gi ¼
ðy� yiÞ
vi

;

uu
i ¼ u1

i un
i ugi un2

i � � � ug
d

i

h iT
;

uvi ¼ v1
i vn

i vgi vn2

i � � � vg
d

i

h iT
;

ð5Þ
in which pðxÞ is a polynomial basis vector for node i, d is the degree
of polynomial bases, vi is the largest edge length of elements
attached to node i, and uu

i and uvi are the degrees of freedom (DOFs)
vectors corresponding to polynomial bases for the displacements u
and v, respectively.

Substituting Eq. (4) into Eq. (3), the displacement interpolation
of the enriched 4-node element is obtained

uðr; sÞ ¼ �uðr; sÞ þ ûðr; sÞ ¼
X4
i¼1

hiðr; sÞ�ui þ
X4
i¼1

Ĥiðr; sÞûi ð6Þ

with

�ui ¼
�ui

�v i

� �
; ûi ¼

ûu
i

ûvi

" #
; Ĥiðr; sÞ ¼ ĥiðr; sÞ 0

0 ĥiðr; sÞ

" #
; ð7Þ

in which �ui is the standard nodal displacement vector at node i in

the global Cartesian coordinate system, and ûi and Ĥiðr; sÞ are the
enriched DOFs vector and the corresponding interpolation matrix,
respectively.

When the linear cover functions are used (i.e., d ¼ 1), the
components of the interpolation matrix and the enriched DOFs
vector become

ĥiðr; sÞ ¼ hiðr; sÞ ni gi½ �; ûu
i ¼ ûn

i ûgi
� �T

; ûvi ¼ ½ v̂n
i v̂gi �

T
:

ð8Þ
For the quadratic cover functions used (d ¼ 2), the following

components and vector are employed

ĥiðr; sÞ ¼ hiðr; sÞ½ni gi n2i nigi g2
i �;

ûu
i ¼ ûn

i ûgi ûn2

i ûng
i ûg

2

i

h iT
; ûvi ¼ v̂n

i v̂gi v̂n2

i v̂ng
i v̂g

2

i

h iT
:

ð9Þ
Using the displacement-strain relation, the strain vector for an

element m is obtained by [9]

eðmÞ ¼ BðmÞuðmÞ; ð10Þ
in which BðmÞ is the displacement-strain relation matrix and the
nodal DOFs vector uðmÞ includes �ui and ûi.

For a finite element model, the static equilibrium equations are
given by

KU ¼ R ¼ RB þ RS; ð11Þ
with

26 S. Kim, P.-S. Lee / Computers and Structures 202 (2018) 25–43



Download English Version:

https://daneshyari.com/en/article/6924144

Download Persian Version:

https://daneshyari.com/article/6924144

Daneshyari.com

https://daneshyari.com/en/article/6924144
https://daneshyari.com/article/6924144
https://daneshyari.com

