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a b s t r a c t

The present paper addresses a weak form quadrature element formulation for the geometrically exact
thin shell model in which the Kirchhoff-Love hypothesis is adopted. The displacement derivative conti-
nuity conditions are enforced by the reconstruction of rotation variables at the edges of elements. By
the utilization of rotation quaternions, a total Lagrange updating scheme is implemented for edge con-
straint director rotations. Several numerical examples are presented to illustrate the effectiveness of
the proposed formulation and the significant reduction in the number of degrees of freedom in geomet-
rically nonlinear thin shell analysis with large displacements and rotations.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The Mindlin-Reissner and the Kirchhoff-Love hypotheses are
well-known for the classical theory of shells. The former incorpo-
rates first-order transverse shear deformation, making it feasible
to describe moderately thick shells. By contrast, the latter only
takes membrane and bending deformation into account, assuming
that the transverse shear deformation is negligible, which is fit for
simulating thin shells [1]. The absence of shear strains implies that
the cross-section is perpendicular to the tangent plane of the neu-
tral surface according to the Kirchhoff-Love shell hypothesis,
enabling the rotation parameters to be related to the first-order
spatial derivatives of displacements. It can be seen that such a rela-
tion implies the implementation of the C1 continuity requirement.
In many cases these requirements are not so easy to be satisfied,
especially in geometrically nonlinear shell analysis, where the rela-
tionships between rotations and displacement derivatives are
complex. This may be one reason for the higher popularity of
Mindlin-Reissner shell hypothesis in the finite element schemes,
although thin shell structures are common in most problems.

Among the majority of the research work on numerical imple-
mentations for geometrically nonlinear shell under Mindlin-
Reissner hypothesis, the geometrically exact shell model proposed
by Simo [2,3], as an analogue of the geometrically exact beam
model [4,5], has a profound influence in the past decades. By utiliz-
ing the Cosserat theory [6], the geometrically exact model can

easily handle large displacements and rotations in structure defor-
mation. Further studies by Simo and other researchers have
tremendously broadened the feasibility of this model in a variety
of analyses [7–10]. The mathematical representation and updating
schemes of spatial rotation are crucial issues in implementations of
geometrically exact model. The quaternion representation avoids
the singularity problems in describing large total rotation, thus
providing a convenient tool for rotation formulation of geometri-
cally exact model. The adoption of quaternion in geometrically
exact beam model was firstly introduced by Vu-Quoc and Simo
[5,11]. A detailed discussion of this issue and a reformation of rota-
tion terms in the realm of Clifford algebra were given by Mcrobie
and Lasenby [12]. For classical shell models undergoing finite rota-
tion, constraint rotation vectors with different updating schemes
[3,13] are commonly utilized for the exclusion of drilling rotation.
A comprehensive introduction of the interrelations between differ-
ent parametrizations for rotation updating in geometrically exact
shell analysis was presented by Brank and Ibrahimbegović [14].

In low-order finite element implementations of Mindlin-
Reissner shells, a major drawback is the shear locking phenomena
caused by independent interpolation of displacements and rota-
tions, which may incur poor results, especially for thin shell struc-
tures. By contrast, the Kirchhoff-Love shell model using
displacements as the only unknowns can bypass the shear locking
problem without extra remedy and avoid dealing with complex
spatial rotations, which is appealing to researchers. In addition,
the challenge of implementing displacement derivative continuity
condition also makes this model a benchmark problem for new
numerical developments. Krysl and Belytschko proposed a
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meshless approach to analyzing thin shells [15], which was further
improved later to model cracks and incorporate finite strains [16].
Cirak et al. introduced the subdivision surface method on the basis
of the spline approximation of configuration to develop a practical
finite element formulation for thin shells [17] and extended it to
non-manifold structures [18]. Kiendl et al. derived a Kirchhoff-
Love shell element on the basis of the isogeometric concept and
showed its advantage on geometric representation [19]. Noels pre-
sented a discontinuous Galerkin formulation to weakly enforce the
continuity of displacement derivatives between thin shell ele-
ments [20]. Millán et al. adopted maximum entropy meshfree
approximation in manifold description of thin shells [21]. Ivan-
nikov et al. discussed the question on the imposition of kinematic
boundary conditions for the nonlinear Kirchhoff-Love shells and
proposed a set of parameters for boundary rotations under differ-
ent conditions [22].

The weak form quadrature element method (abbreviated as
QEM) is a numerical scheme that combines the differential quadra-
ture analogue and numerical integration schemes to approximate
and discretize the variational description of a problem [23,24].
There are a variety of weak form quadrature elements, depending
on the choice of the numerical integration scheme. When efficient
numerical schemes such as Lobatto quadrature are adopted, the
differential quadrature analogue [25,26] embodies the essential
ideas of the pseudo-spectral method [27] and the QEM overlaps
with the spectral element methods [28–30] accordingly. Due to
the coincidence of integration points and interpolation nodes
within elements, the QEM exhibits advantages in representing con-
figurations with high-order approximants and circumventing some
problems (e.g. the loss of objectivity in large deformation analysis)
brought by improper interpolation between nodes and integration
points. Besides its high efficiency, it is feasible to overcome shear
and membrane locking problems because of its high-order charac-
teristics that effectively alleviate the influences of constraints
incurred by couplings of different order approximations to bring
about reconciliation of deformation [23,31]. Weak form quadrature
element formulations have been successfully implemented for the
analysis of nonlinear beams and shells on the basis of relevant geo-
metrically exact models in previous investigations [31–33].

Analogous to the previous study on Simo’s geometrically exact
Mindlin-Reissner shell model [31], a weak form quadrature ele-
ment formulation of the geometrically exact Kirchhoff-Love shell
is presented in this paper. Compared with the previous formulation
[31], the number of degrees of freedom (DOF) is significantly
reduced in the present formulation by the elimination of inner

rotations. The shear-rigid hypothesis of thin shell is inherently
incorporated here. Differing from the previous C0 continuity
quadrature element, a new scheme for weak form quadrature shell
element to meet the C1 continuity requirement is proposed. The
element edge tangent rotation variables are reconstructed by
introducing edge constraint directors for the convenience of
enforcing rotational continuity conditions, circumventing the cum-
bersome use of displacement derivative parameters. The rotation
quaternion is utilized for the expression of rotations of edge con-
straint directors, thus making it feasible to implement a total
Lagrange updating scheme for the variables in the shell model,
which avoids the accumulation of computational errors.

The remaining part of this paper is organized as follows. In Sec-
tion 2, the basic ideas and relevant equations of the geometrically
exact Kirchhoff-Love shell are given. The weak form quadrature
element formulation is established in Section 3. Six numerical
examples are presented in Section 4 to evaluate the performance
of the formulation. Conclusions are drawn in Section 5.

2. Geometrically exact Kirchhoff-Love shell

2.1. Configuration description and kinematic assumption

As shown in Fig. 1, the reference configuration, the initial con-
figuration and the current configuration of a shell described by
Simo’s geometrically exact model are denoted by Xr , X0 and X,
respectively. The Cartesian frame fEigði ¼ 1;2;3Þ serves as the ref-
erence coordinate system. It can be seen that the configuration is
characterized by the position vector r that determines the mid-
surface and a corresponding unit normal vector t. The position of
an arbitrary material point in the current configuration Xr can be
expressed as

/ ¼ rðxaÞ þ x3tðxaÞ; x3 2 ½h�
; hþ�: ð1Þ

The convected coordinates xa describe the configuration that is
uniquely determined by r and t, while coordinate x3 locates the
position along the thickness direction of the shell. The Greek
indices range from 1 to 2 in the present paper. The thickness of
the shell h ¼ hþ � h� is assumed to be invariant during deforma-
tion. For finite deformation analysis, additional parameters are
needed to incorporate thickness stretch [34], the corresponding
derivation is straightforward and is not discussed in this paper
accordingly. Similarly, the material point in the initial configura-
tion X0 is given by

/0 ¼ r0ðxaÞ þ x3t0ðxaÞ; x3 2 ½h�
; hþ�: ð2Þ

From Eqs. (1) and (2), the initial and current local covariant
frames attached to the mid-surface of the shell are defined as

fg1 g2 t0 g ¼ f r0;1 r0;2 t0 g ð3Þ
and

f t1 t2 t g ¼ f r;1 r;2 t g; ð4Þ
respectively; the comma denotes partial differentiation, i.e.
ð�Þ;a ¼ @ð�Þ=@xa. The covariant metric tensor gab is defined by the
initial covariant frame as

gab ¼ ga � gb; ð5Þ
and the contravariant metric tensor gab is obtained by

gabgbc ¼ dac ; ð6Þ

where dac is the Kronecker delta function.
For Kirchhoff-Love shells, the unit vector t coincides with the

normal of the mid-surface of the shell, namelyFig. 1. Reference, initial and current configuration of shell.
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