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a b s t r a c t

A class of composite method that implements the trapezoidal rule in the first few sub-steps and the back-
ward difference formula in the last sub-step is studied in this paper. The optimal schemes of two sub-
step, three sub-step and four sub-step methods, where the four sub-step composite scheme is developed
for the first time, are proposed by optimizing their accuracy. Compared with several existing composite
methods, the optimal schemes are also endowed with second-order accuracy, unconditional stability and
strong numerical damping, and they can achieve higher amplitude and period accuracy under the same
amount of calculation. Moreover, it follows that in the optimal schemes the more sub-steps the higher
accuracy, so the optimal four sub-step method is highly recommended. Several test problems are used
to validate the performance.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Time integration methods include explicit and implicit meth-
ods. Explicit methods cost less per step, while implicit methods
are more competitive due to the permission of larger time step.
In implicit methods, numerical dissipation is important to remove
the spurious high-frequency modes introduced by spatial dis-
cretization, and benefits numerical stability of the method when
applied to nonlinear systems. In this study we focus on the com-
posite implicit methods, so several kinds of representative implicit
methods are first reviewed below.

Following the Newmark method [1], a series of single-step col-
location methods [2–6] show second-order accuracy, uncondi-
tional stability and controllable numerical damping. And the
energy conserving and decaying methods [7–11] can meet the
energy criterion for nonlinear systems. These two kinds of methods
are good candidates for structural dynamics, but improving their
dissipation capability is accompanied by lowering their accuracy.

The Bathe method [12–14] is a two sub-step composite method
using the trapezoidal rule in the first sub-step and the three-point
Euler backward formula in the second sub-step, and was demon-
strated to be reliable and effective for linear and nonlinear dynam-
ics. The composite method combines the advantages of the
employed trapezoidal rule and three-point Euler backward for-
mula, where the former improves low-frequency accuracy, and
the latter improves high-frequency dissipation. Further investiga-
tions [15–18] have checked the performance of the Bathe method

on structural dynamics and wave propagation problem, and opti-
mized the sub-step division.

Afterwards, several implicit composite methods [19–22] involv-
ing three or four sub-steps were developed. A combination of the
trapezoidal rule and the higher-order Newton backward extrapola-
tion functions yields the multi-sub-step higher-order implicit time
integration family [19]. However, this kind of methods of more
than four sub-steps are unstable and more than two sub-steps
are conditionally stable. Chandra et al. [21] proposed a three-
sub-step scheme using the trapezoidal rule in the first two sub-
steps and the backward difference formula in the last sub-step,
named the TTBDF method (the Trapezoidal rule–the Trapezoidal
rule–the Backward Difference Formula). Besides, another three-
sub-step method [22], the Wen method, employed the trapezoidal
rule, the backward difference formula and the Houbolt method in
the first, second and third sub-step, respectively. These two
three-sub-step methods show similar attributes to the Bathe
method, but the comparative study [23] indicated that the TTBDF
method possesses higher accuracy, while the Wen method [22] is
more suitable for solving wave propagation problem.

In order to achieve better performance, the present authors pro-
pose a four sub-step scheme in this work, referred to as the TTTBDF
method (the Trapezoidal rule–the Trapezoidal rule–the Trape-
zoidal rule–the Backward Difference Formula), and the class of
composite methods that adopt the trapezoidal rule in the first
few sub-steps and the backward difference formula in the last
sub-step are optimized. Compared with the existing composite
methods, the optimal schemes of the TTBDF and TTTBDF methods,
referred to as the OTTBDF and OTTTBDF methods respectively, are
more accurate and provide sufficient high-frequency dissipation as
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well under the same amount of calculation. Since theoretical anal-
ysis is limited to the linear range, the pendulum problem is
employed to check the performance on nonlinear dynamics and
the results illustrate that the proposed optimal schemes possess
desirable stability and accuracy.

This paper is organized as follows. In Section 2, the basic formu-
lations for the two, three and four sub-step schemes are presented
and the optimal parameters are generated by linear analysis. Then
the comparative study on properties of the optimal schemes and
several existing composite methods is conducted in Section 3.
The numerical simulations including linear and nonlinear prob-
lems are implemented in Section 4. Finally, the conclusions are
drawn in Section 5.

2. Formulations

The generalization of the composite methods by applying the
trapezoidal rule in the first few sub-steps and the backward differ-
ence formula in the last sub-step was firstly proposed in Ref. [12];
however, in this class, the current multi-sub-step methods mostly
dividing the step into equal parts are not the optimal schemes.

In this section, the Bathe method and the TTBDF method are
reviewed, and the TTTBDF method is formulated. On the basis of
second-order accuracy and unconditional stability, the optimal
schemes are generated by the measures of percentage amplitude
decay and period elongation. In the TTBDF and TTTBDF methods,
several factors such as computation cost and matrix storage are
taken into account to provide additional parameter relations.

2.1. The Bathe method

In the Bathe method, the time interval [t, t + h] is divided into
two sub-steps [t, t + ch] and [t + ch, t + h], where 0 < c < 1 is an
adjustable parameter. In the first sub-step, the trapezoidal rule is
used as

xtþch ¼ xt þ ch
2
ð _xt þ _xtþchÞ

_xtþch ¼ _xt þ ch
2
ð€xt þ €xtþchÞ

ð1Þ

In the second sub-step, the three-point Euler backward method
is employed as

h _xtþh ¼ h2xtþh þ h1xtþch þ h0xt
h€xtþh ¼ h2 _xtþh þ h1 _xtþch þ h0 _xt

ð2Þ

where the parameters satisfy

h2 ¼ c� 2
c� 1

; h1 ¼ 1
cðc� 1Þ ; h0 ¼ � c� 1

c
ð3Þ

For linear structural system, the equilibrium equations used in
two sub-steps are respectively as

M€xtþch þ C _xtþch þ Kxtþch ¼ Rtþch ð4Þ

M€xtþh þ C _xtþh þ Kxtþh ¼ Rtþh ð5Þ
where M, C, K and R are the mass matrix, damping matrix, stiffness
matrix and external load vector, respectively; x, _x and €x are the dis-
placement, velocity and acceleration, respectively.

In terms of Eqs. (1)–(5), the time-stepping equations can be
written as

K
_

1xtþch ¼ R
_

1 ð6Þ

K
_

2xtþh ¼ R
_

2 ð7Þ

where the effective stiffness matrices and load vectors are

K
_

1 ¼ 4

c2h2 M þ 2
ch

C þ K ð8Þ

R
_

1 ¼ Rtþch þM
4

c2h2 xt þ
4
ch

_xt þ €xt

 !
þ C

2
ch

xt þ _xt

� �
ð9Þ

K
_

2 ¼ h22
h2 M þ h2

h
C þ K ð10Þ

R
_

2 ¼ Rtþh �M
h2

h2 ðh1xtþch þ h0xtÞ þ 1
h
ðh1 _xtþch þ h0 _xtÞ

� �

� C
1
h
ðh1xtþch þ h0xtÞ

� �
ð11Þ

Then the velocity and acceleration are updated according to Eqs.
(1) and (2). For linear systems, the effective stiffness matrices in
Eqs. (8) and (10) are factorized prior to the recursion. However,
in nonlinear analysis, the tangent stiffness matrix changes in every
iteration.

The Bathe method is preferred since it can effectively preserve
the low-frequency modes (q? 1 when xh � 0.6) and filter out
the high-frequency modes (q? 0 when xh � 2). Figs. 1 and 2
show the percentage amplitude decay and period elongation ver-
sus c for several different s (s =xh). It is observed that regardless
of the value of s, the extreme values of these curves occur at the
same c. The theoretical analysis yields the extreme point as

c ¼ 2�
ffiffiffi
2

p
ð12Þ

which features the minimum period elongation but the maximum
amplitude decay. In addition, it also reduce computation cost for
linear system since two sub-steps share the same effective stiffness
matrix 4M/c2h2 + 2C/ch + K as h2 = 2/c. As a result, c ¼ 2�

ffiffiffi
2

p
is the

optimal parameter for the Bathe method. The same conclusion was
also reached in Refs. [17,18] by a similar way.

2.2. The TTBDF method

The TTBDF method [21] divides the time step [t, t + h] into three
sub-steps [t, t + c1h], [t + c1h, t + c2h] and [t + c2h, t + h] where 0 <
c1 < c2 < 1. The trapezoidal rule is employed in the first two
sub-steps as

Fig. 1. Percentage amplitude decay versus c for the Bathe method.
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