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a b s t r a c t

In this contribution, a novel local, node-based time step estimate for reciprocal mass matrices is pro-
posed. Element-based estimates turn out to be not generally conservative and are consequently inade-
quate. Therefore, the nodal time step estimate for diagonally lumped mass matrices based on
Gershgorin’s theorem is further developed for application to reciprocal mass matrices. Additionally, sim-
plifications of the proposed time step estimate that improve computational efficiency, especially for con-
tact problems with the penalty method, are discussed and evaluated by numerical examples.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, reciprocal mass matrices, i.e. directly assembled
inverse mass matrices, were proposed by Lombardo and Askes
[1], Tkachuk and Bischoff [2] and Gonzalez et al. [3] as an efficient
alternative to diagonally lumped mass matrices in explicit dynam-
ics. These reciprocal mass matrices allow trivial computation of the
nodal acceleration from the total force vector. The latter two were
developed in the context of selective mass scaling, i.e. they increase
the stable time step of explicit integration without deteriorating
the low frequency response. Though these papers show that a sub-
stantial speed-up with respect to lumped mass can be obtained,
accurate and efficient time step estimates remain an open issue.
In both the earlier work of the authors’ group [2] and in the work
of Gonzalez et al. [3] inefficient global estimates were used. In the
paper of Lombardo and Askes [1] element-based time step esti-
mates were proposed, but their possible non-conservativeness is
shown in this work. An efficient, accurate and conservative esti-
mate, however, is indispensable to exploit the full capacity of the
increased time step and make these methods attractive for practi-
cal applications.

For the central difference method, the time step Dt is limited by
the critical time step Dtcrit through the stability criterion

Dt < Dtcrit ¼ 2
xmax

; ð1Þ

where xmax is the maximum eigenfrequency. Existing time step
estimates to determine the critical time step Dtcrit can be catego-

rized into two groups, namely global and local time step estimates.
The latter can again be categorized as element-based and node-
based estimates. Element-based estimates require data from the
element level, like a characteristic element length, whereas node-
based estimates require data from the degree-of-freedom-level, like
the mass or stiffness associated with the degree of freedom. Global
time step estimates determine the maximum eigenfrequency of the
global system by solving the standard eigenvalue problem (EVP).
For reciprocal mass matrices this is

ðC�K� kiIÞ/i ¼ 0 with ki ¼ x2
i ; ð2Þ

where C� and K are the reciprocal mass matrix and the stiffness
matrix and ki;xi and /i are the ith eigenvalue, eigenfrequency
and the right eigenvector, respectively. Note that the symbol C� is
used for the reciprocal mass matrix in consistence with earlier pub-
lications on reciprocal mass matrices and it should not be confused
with the damping matrix. Damping is ignored within this work. The
standard EVP can be solved by iterative algorithms, like forward
iteration. Since global estimates are computationally expensive,
local estimates are preferred in practical applications. Element-
based local estimates make use of the element eigenvalue inequal-
ity by Fried [4], which states that the global eigenvalue k is bounded
by the element eigenvalues kei ,

jkmaxj 6 jkmax
E j where kmax

E ¼ max
i;e

kei : ð3Þ

The maximum element eigenfrequencies can be estimated by
considering the strain-displacement operator as proposed by
Flanagan and Belytschko [5] or by geometric considerations (as
used in LS-DYNA [6]) through the Courant-Friedrichs-Lewy-criter
ion [7] with
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max
i;e

xe
i ¼

c
le
: ð4Þ

Here, c is the characteristic wave speed, which depends on the
dimensionality, the stress assumptions and the material properties
and le is the characteristic length of the element.

Note that the inequality from Eq. (3) is valid for a generalized
symmetric eigenvalue problem only as it exists for the lumped or
consistent mass M with

ðK� kiMÞ/i ¼ 0 with ki ¼ x2
i ; ð5Þ

and results from the inequality of the Rayleigh quotient on the local
and global level with

max
i

x2
i ¼ max

i
ki ¼ max

i

/T
i K/i

/T
i M/i

6 max
i;e

ðxe
i Þ2 ¼ max

i;e
kei

¼ max
i;e

/eT
i ke/

e
i

/eT
i me/

e
i

; ð6Þ

where /e
i ;ke;me are the ith eigenvalue, the stiffness matrix and the

mass matrix on the element level. The eigenvalues on the global and
element level for the product eigenvalue problem given in Eq. (2)
can also be obtained from the Rayleigh quotient using additionally
the global left eigenvectors /L

i and the local left eigenvectors /L;e
i

with

max
i

x2
i ¼ max

i
ki ¼ max

i

/L
i

� �T
C�K/i

/L
i

� �T
/i

i max
i;e

ðxe
i Þ2

¼ max
i;e

kei ¼ max
i;e

/
L;e
i

� �T
c�eke/

e
i

/
L;e
i

� �T
/e

i

: ð7Þ

However, the inequality does not necessarily hold for the product
eigenvalue problem. This is confirmed by a simple illustrative
example in Appendix A. As a consequence, element-based estimates
for reciprocal mass matrices may be non-conservative and they are
thus inappropriate. Alternative, node-based local estimates are
based on Gershgorin’s theorem [8], which bounds the spectrum of
a square matrix. For a square matrix A 2 Cn�n, the Gershgorin’s cir-
cles that belong to the ith diagonal entry Aii of the matrix are
defined by

SiðAii;
Xn

j¼1;j–i

jAijjÞ; i ¼ 1::nðrow-wiseÞ and Si Aii;
Xn

j¼1;j–i

jAjij
 !

;

i ¼ 1::nðcolumn-wiseÞ; ð8Þ

where SðRðzÞ; rÞ defines a circle with center RðzÞ and radius r in
the complex plane. Gershgorin’s theorem states that all eigenval-
ues are found inside the circles defined in Eq. (8). Based on Ger-
shgorin’s theorem Kulak [9] proposed a nodal estimate to
determine the maximum eigenfrequency for diagonally lumped
mass matrices

xLMM
max ¼ max

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1jKijj
Mi

s
; ð9Þ

where Mi is the lumped mass at degree of freedom i. In case of pen-
alty contact the estimate can be supplemented by the absolute row
sum Kp

i at degree of freedom i of the penalty stiffness matrix (see
Belytschko and Neal [10])

xLMM;pen
max ¼ max

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1jKijj þ Kp

i

Mi

s
: ð10Þ

The assumption on the penalty stiffness is an upper bound in gen-
eral. In the special case of rigid wall contact it is exact.

In the following, Gershgorin’s time step estimate for lumped
mass matrices is extended to reciprocal mass matrices. Moreover,
some modifications on the algorithm to increase computational
efficiency are proposed. The objective is to meet the requirements.

� to be conservative,
� to be efficient and
� to provide satisfactory results for irregular and distorted
meshes.

Efficiency implies both reasonable computational effort to com-
pute the time step and an estimate that is not too conservative, i.e.
not too small compared to the exact critical time step.

2. Node-based time step estimate and further assumptions for
efficient implementation

In this section, the extension of Gershgorin’s time step estimate
to reciprocal mass matrices is systematically explored. First, row-
wise, column-wise and symmetric estimates for the non-
symmetric eigenvalue problem stated in Eq. (2) are discussed. Sec-
ondly, the extension of the row-wise estimate to penalty contact is
developed. Thirdly, the time step estimate for penalty contact is
rearranged. The rearrangements allow efficient recomputation of
the time step with the time varying active contact set and are
based on several consequent assumptions using sub-additivity
and sub-multiplicativity of vector and matrix norms.

2.1. Time step estimates for problems without contact

The maximum eigenfrequency of eigenvalue problem (2) with
reciprocal mass matrices is bounded according to Gershgorin’s the-
orem by

xrow-wise
max ¼ max

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1
jðC�KÞijj

r
: ð11Þ

The matrix-product C�K is non-symmetric and a row-wise Gersh-
gorin’s circle is used in Eq. (11). Alternatively, a column-wise Gersh-
gorin’s circle

xcolumn-wise
max ¼ max

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1
jðKC�Þijj

r
¼ max

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1
jðC�KÞjij

r
ð12Þ

may be used. The use of a non-symmetric matrix C�K may be
avoided by a Cholesky decomposition of the reciprocal mass matrix,
C� ¼ LTL. It can be used to apply Gershgorin’s theorem to the sym-
metric EVP

ðLTKL �x2
i IÞui ¼ 0 ! xsymm

max ¼ max
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1
jðLTKLÞijj

r
; ð13Þ

which has different eigenvectors but the same eigenvalues as the
EVP stated in Eq. (2).

Eqs. (11)–(13)2 are the basic estimates of the eigenfrequency.
From this, the time step estimates for the central difference
method are obtained with Eq. (1). The proposed novel nodal time
step estimate for reciprocal mass matrices resulting from Eq. (11)
is thus

Dtrow-wise
crit ¼ min

i
Dti;row-wise

crit ¼ min
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Pn

j¼1jðC�KÞijj

s
: ð14Þ

The choice of the row-wise version is justified in some more detail
in the following section.
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