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a b s t r a c t

We propose a new 8-node hexahedral element, the 3D-MITC8 element, for the analysis of three-
dimensional solids. We use the MITC method and find the assumed strain field from a thought experi-
ment using a truss idealization. For geometric nonlinear analysis, when needed to suppress hour-glass
deformations, the formulation also uses automatically displacement-based contributions to the shear
strains. The element shows a much better predictive capability than the displacement-based element.
It is computationally more effective than the 8-node element with incompatible modes, and considering
accuracy, in linear analysis performs almost as well, and in nonlinear analyses we do not observe spuri-
ous instabilities. We show that the new 3D solid element passes all basic tests (the isotropy, zero energy
mode and patch tests) and present the finite element solutions of various benchmark problems to illus-
trate the solution accuracy reached with the new element.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

A three-dimensional 8-node hexahedral solid finite element is
frequently employed for the finite element analysis of solids in
engineering practice. The element can be used to model many
three-dimensional (3D) solids and performs considerably better
than the 4-node tetrahedral element. However, the standard 8-
node 3D solid element does not satisfy the inf-sup conditions,
hence the solution accuracy can severely deteriorate due to shear
and volumetric locking [1,2].

To improve the behavior of the standard displacement-based
element, additional ‘‘incompatible modes” are frequently used
[3]. The incompatible modes technique is a special case of the
enhanced assumed strain (EAS) method, and the resulting 8-node
3D solid element requires, compared to the standard pure
displacement-based element, an additional 9 internal degrees of
freedom to represent the conditions of pure bending [3–6]. The ele-
ment is quite powerful since it alleviates both shear and volumet-
ric locking, but it uses the additional degrees of freedom and can
show a non-physical instability in the analyses of nonlinear prob-
lems [5–8].

The instability of the EAS elements has been observed to occur
in both small and large strain nonlinear analyses [7–14]. If an ele-
ment mesh is subjected to compression, a spurious hour-glass
bending mode may occur in elements eventually resulting into

an indefinite stiffness matrix at a certain critical compressive strain
[8]. Initially, the hour-glass deformations are small but as they
grow, the incremental analysis leads to a spurious collapse of the
model.

To treat the spurious instability special solution methods and
various element formulations have been developed. The varia-
tional principle for nonlinear analysis has been modified, stabiliza-
tion parameters have been proposed, and mixed-enhanced
elements have been developed [9–14], see these references and
the references therein. However, further developments are of
much interest and, based on our success of developing reliable
and efficient shell elements based on the MITC technique [1], we
believe that we can also obtain an effective 3D eight-node MITC
element.

In this paper we propose a new 8-node hexahedral element
based on the standard displacement interpolations and the MITC
(Mixed Interpolation of Tensorial Components) approach
[1,2,10,15–20]. To obtain a stable element, we choose the tying
positions and strain interpolations based on the physical behavior
of a simple truss structure that idealizes the 8-node solid element.
For geometric nonlinear analysis to suppress hour-glass deforma-
tions, the formulation also uses automatically when needed a sta-
bilization scheme based on displacement-based contributions in
shear strains. Using these key ideas for the assumed strain field,
we find the 3D-MITC8 element to give solution stability, good solu-
tion accuracy, and to be computationally efficient. We also extend
this element to obtain the 3D-MITC8/1 element based on a mixed
displacement-pressure formulation.
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In the next section we present the concepts we use for the tying
and interpolation of the strains in the MITC procedure. Then, in
Section 3, we propose the new 3D-MITC8 and 3D-MITC8/1 ele-
ments using the total Lagrangian (T.L.) formulation. Of course,
the linear behavior corresponds to the first step in the T.L. formu-
lation. Further, in Section 4, the stability and accuracy of the ele-
ment are assessed using basic tests (the isotropy, zero energy
mode and patch tests) and the solutions of various benchmark
problems. Finally, in Section 5, we present our conclusions.

2. Tying and interpolation of strains in the MITC procedure

In this section, we present the concepts we employ in the MITC
procedure for the new element. The tying positions and interpola-
tions of the assumed strain components are developed considering
stability in linear and nonlinear analyses.

The geometry of an 8-node hexahedral solid element is shown
in Fig. 1. The element domain is given and the strain components
are defined corresponding to the three natural coordinates, r, s
and t. For the 3D solid element, there are three normal (in the
directions of r, s and t) and three shear (on the planes of rs, st
and tr) strain components. The six assumed strain components
are denoted by 0~err , 0~ess, 0~ett , 0~ers, 0~est and 0~etr .

The choice of assumed strain interpolation must be such that
the solid element is stable corresponding to each strain compo-
nent. To obtain insight, we idealize the hexahedral domain as a
truss structure with 8 joints that correspond to the nodes, see
Fig. 2(a), of the 8-node 3D element. The selected truss structure
is shown in Fig. 2(b). This structure is stable and consists of the
minimum number of 2-node truss elements. We next consider
the location and direction of each truss element to correspond to
an assumed strain component. The location of tying is given by
the truss element but to obtain better accuracy using the 3D ele-
ment in analyses we can move these locations to corresponding
Gauss integration points.

If the truss structure we use is stable with the minimum num-
ber of truss elements, we can expect that in linear analysis the 3D
MITC element will also be stable and will not lock, because a min-
imum number of truss elements is used. The use of the truss struc-
ture to idealize the solid element is similar to how the classical
transverse shear assumption was developed by Dvorkin and Bathe
for 4-node shell elements, notably for the MITC4 shell element
[15]. Here the 4-node shell element transverse shear behavior
was idealized by the behavior of four 2-node isoparametric beam
elements located along the edges of the shell element, with each
beam assuming a constant transverse shear strain [1,15].

We place a tying location at the center of each truss, and inter-
polate the assumed strain components according to these loca-
tions, see Fig. 2(c). The normal strains (0~err , 0~ess and 0~ett) are
interpolated bilinearly over the planes defined by their respective
tying locations and the shear strains (0~ers, 0~est and 0~etr) are interpo-
lated linearly between the tying points.

While the resulting assumed strain field yields stability in linear
analysis, there is an instability that can arise in nonlinear analysis.
The phenomenon has been widely observed for enhanced assumed
strain elements when initially regular meshes undergo compres-
sion [7–14]. Indeed, for the incompatible modes elements, spuri-
ous bending deformations or hour-glass modes are seen at a
critical state even in small strains [8]. For an 8-node hexahedral
element, possible 2D and 3D hour-glass modes are depicted in
Fig. 3(a) and (b), respectively. This behavior occurs if an 8-node
element has the ability to express pure bending deformations
and the surrounding elements cause mixed behavior of bending
and compression. The behavior is possible for the incompatible
modes element.

The mechanism of this nonlinear instability was studied by
Sussman and Bathe [8], where it was found that a spurious bending
deformation occurs when a critical compressive strain state is
reached. For the two different kinds of hour-glass modes we treat
the potential instabilities separately. We suppress the accumula-
tion of a 3D hour-glass mode by using the incremental displace-
ments to calculate the constant compressive strain. Further, we
suppress the 2D hour-glass modes and their coupling to the 3D
hour-glass mode by interpolating an additional stabilizing shear
strain term bilinearly on the respective planes defined by the
mid-points on the edges, see Fig. 3(c).

Incorporating these ideas, the assumed strain field is proposed
as

0~err ¼ A0
rr þ A1

rrsþ A2
rrt þ A3

rrst;

0~ess ¼ A0
ss þ A1

sst þ A2
ssr þ A3

sstr;

0~ett ¼ A0
tt þ A1

ttr þ A2
ttsþ A3

ttrs;

0~ers ¼ A0
rs þ A1

rst þ S1rsr þ S2rssþ S3rsrs;

0~est ¼ A0
st þ A1

str þ S1stsþ S2stt þ S3stst;

0~etr ¼ A0
tr þ A1

trsþ S1trt þ S2trr þ S3trtr;

ð1Þ

in which the Ak
ij and Skij are the unknown strain coefficients. The con-

stants Ak
ij (k = 0, 1, 2, 3) and corresponding interpolations allow

overall stability in linear and nonlinear analyses. The constants Skij
(k = 1, 2, 3) are designed to automatically suppress 2D hour-glass
deformations in nonlinear solutions and are significant only when
compressive strain has been accumulated.

3. Formulation of 3D-MITC8 element

We use the left-superscript t to denote the current configura-
tion (or ‘time’) of the element. We employ the total Lagrangian for-
mulation with the reference configuration at time 0 indicated by
the left subscript 0.

The geometry and displacement of the standard 8-node hexahe-
dral 3D solid element is interpolated by [1]

tx ¼
X8
i¼1

hiðr; s; tÞtxi

¼ txix þ tyiy þ tziz

¼ tx ty tz½ �T ;

with txi ¼ txi tyi
tzi½ �T ,

Fig. 1. A standard 8-node hexahedral 3D solid element.
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