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a b s t r a c t

The basic feature of the peridynamic model (introduced by Silling: J. Mech. Phys. Solids, 2000; 48:
175–209) considered is a continuum description of a material behavior as the integrated nonlocal force
interactions between infinitesimal material points. A heterogeneous bar of periodic structure of con-
stituents with the peristatic mechanical properties is analysed. One introduces the new volumetric peri-
odic boundary conditions (PBCs) at the interaction boundary of a representative unit cell (UC) whose local
limit implies the known locally elastic PBCs. The discretization of the equilibrium equation for peristatic
composite materials (CMs) acts as a macro-to-micro transition of the deformation-driven type, where the
overall deformation is controlled. Determination of the microstructural displacements in an accompany
with the volumetric PBC allows one to estimate the peristatic traction at the geometrical UC’s boundary
which is exploited for estimation of the macroscopic stresses with subsequent evaluation of the effective
moduli. Introduction of the volumetric PBCs opens the opportunities for systematic generalization of the
classical computational homogenization approaches for CMs with the local constitutive laws for the dif-
ferent dimensions and physical phenomena to their peristatic counterparts. In particular, a convergence
of effective modulus estimations is demonstrated for both the peristatic composite bar and locally
elastic bar.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Peridynamics is a nonlocal theory introduced by Silling [1] (see
also [2,3] and references herein) in solid mechanics and general-
ized in so-called state-based formulation by Silling et al. [4]. The
effectiveness of peridynamic models has already been demon-
strated in several sophisticated applications, including damage
accumulation, the fracture and failure of composites of determinis-
tic structure, crack instability, the fracture of polycrystals, phase
transition, diffusion, and nanofiber networks (see, e.g., [5–7] and
references herein). Generally in peridynamics, the state-based
approach permits the response of a material at a point to depend
collectively on the deformation of all bonds connected to the point
within its finite radius horizon (Silling et al. [4], Silling and Lehoucq
[7]) via a response function that completely describes the interac-
tion. It means that the forces between two peridynamic nodes
depend also on deformations of other bonds surrounding these
nodes within the horizons. The horizon can encompass discontinu-
ities or different materials. A simplified version derived from this
approach is the so-called bond-based approach, in which interac-
tions only occur between pairs of material points within a horizon.
As is well known, a direct consequence of this assumption is that

the Poissons ratio for isotropic linear materials is fixed at = 1/4 in
three dimensions or = 1/3 in two dimensions (plane stress, see
[1,8]). The major advantages of the state-based approach include
a material response depending on collective quantities (like vol-
ume change or shear angle), which allows constitutive models
from the conventional theory of solid mechanics to be incorporated
directly within the peridynamic approach (see, for example [4,9]).
However, this paper will use the bond-based approach as it is most
suitable to the chosen implementation. The term peristatics is used
analogously to Mikata [10] to differentiate the static problems con-
sidered in the current paper from the dynamic problems.

The mentioned achievements of peridynamics were mostly per-
formed for either the initially homogeneous materials or the deter-
ministic structures. However, estimation of macroscopic effective
response of heterogeneous media (with either random or periodic
structures) in an averaged (or homogenized) meaning in terms of
the mechanical and geometrical properties of constituents is not
as well developed. Background of random structure peristatic com-
posites was developed by Buryachenko [11,12] who also presented
some numerical results for 1D case (see [13,14]). The research in
homogenization of peridynamic periodic structure peristatic
composite materials (CMs) is less well developed and just a few
discussions in this area are published. So, Alali and Lipton [15] con-
structed two-scale solution expansion (with neither numerical
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results nor definition of the effective moduli) splitting into a micro-
scopic component tracking the dynamics at the length scale of the
heterogeneities and a macroscopic component tracking the volume
averaged (homogenized) dynamics. By considering the microme-
chanics of a layered composite under uniaxial stress, Silling [16]
demonstrated that nonuniformity of the macroscopic strain field
leads to nonlocality in a homogenized model. The peristatic coun-
terpart of the computational homogenization in local elasticity
(see e.g. [17–19] and references therein) is started by Madenci
et al. [20] who proposed the peridynamic unit cell model for pre-
diction of the effective properties by the use of the classical peri-
odic boundary conditions (PBC). The most important features of
the computational homogenization is a description of the periodic
boundary conditions at the unit cell. The current work is dedicated
to systematic generalization of classical locally elastic version of
the computational homogenization to their peristatic counterpart.
We refer to the boundary of the UC separating the adjoining UCs
one from another as the geometrical boundary of the UC. For the
peristatic linear bond-based model being considered and utilizing
the integral governing equation, the material points in the vicinity
of the geometric boundary of the UC directly interact within the
horizon. It defines a volumetric region (called an interaction
boundary of the UC) surrounding the geometric boundary and lim-
ited by the surfaces at the horizon distance from the geometrical
boundary of the UC. Proposal of new volumetric periodic boundary
conditions (PBC) opens the great opportunities for exploration of
peristatic CM of periodic structure. We focus on deformation dri-
ven procedure formulated at the macroscopic level as follows:
given a macroscopic strain determine the macroscopic stress and
the constitutive tangent, based on the response of the underlying
microstructure. For clarity, one considers the examples for an infi-
nite 1D peristatic bar of periodic structure when a classical locally
elastic counterpart of the corresponding problem is exactly solved.
Analysis of the simplified 1D structure makes it possible to focuss
our attention to direct use of a large body of both the analytical and
numerical results obtained for 1D homogeneous and inhomoge-
neous peridynamic bar of deterministic structure (see, e.g., Silling
et al. [21], Silling and Askari [22], and also [10,23–26]).

The paper is organized as follows. In Section 2 we give a short
introduction into the 1D peristatic theory of solids as well as a
decomposition scheme for the material and field parameters of
heterogeneous peristatic bar. In Section 3 the known exact solu-
tions for locally elastic heterogeneous bar of both statistically
homogeneous and periodic structures are summarised in the form
adopted for subsequent comparison with the corresponding solu-
tions for the peristatic heterogeneous bar. In Section 4 the problem
for one inclusion inside a homogeneous bar is considered at the
volumetric displacement loading and forth loading; the proposed
quadrature solution forms are adopted for a straightforward gener-
alization in Section 5 to the peristatic bar of periodic structure. In
Section 5 the new volumetric periodic boundary conditions are
defined and the peristatic problem for the displacement and stres-
ses in the periodic structure bar is solved by both the direct and
decomposition quadrature approaches. The representations for
the effective properties are obtained in Section 6. The numerical
results are presented in Section 7 where one also demonstrates a
convergence of effective modulus estimations obtained for the
peristatic composite bar to the corresponding exact effective mod-
uli evaluated for the local elastic theory.

2. Preliminaries

2.1. Basic equations of peristatics

In this section, we first summarize the linear peristatic 1D the-
ory (see the references in Introduction) for an infinitely long bar of

a constant cross section A ¼ 1, assume that the bar is parallel to the
x1 � x axis. We reproduce (see for details Silling et al. [21] the con-
stitutive law for a peristatic bar directly in the one-dimensional
setting, omitting the calculations requiring the cross section:

L � uðxÞ þ bðxÞ ¼ 0; L � uðxÞ :¼
Z 1

�1
Cðx; x̂Þ½uðx̂Þ � uðxÞ�dx̂; ð2:1Þ

where u is the displacement field, b is a prescribed external force
density field, and C is a stiffness distribution density or micromod-
ulus function. The body force density function bðxÞ is assumed to be
self-equilibratedZ 1

�1
bðxÞdx ¼ 0 ð2:2Þ

and vanished outside some loading region: bðxÞ ¼ 0 for jxj > ad. For
consistency with Newton0s third law, the micromodulus function C
for the homogeneous materials must be even (n ¼ x� x̂):

CðnÞ ¼ Cð�nÞ for�1 < n < 1: ð2:3Þ
It is assumed that CðnÞ has a compact support, i.e. the material has a
‘‘horizon”, when there is no interaction between particles that are
more than some finite distance lc apart, then CðnÞ � 0 for all
jnj > lc . Thus, the integration domain R ¼ ð�1;1Þ in Eq. (2.1) can
be limited by a neighborhood Hxðx̂Þ ¼ fx̂ : jx̂� xj < lcg of the point
x. For example for the micromodulus functions with the step-
function and triangular profiles

CðnÞ ¼ C; for jnj < lc;

0; for jnj > lc:

�
; CðnÞ ¼ Cð1� jnj=lcÞ; for jnj < lc;

0; for jnj > lc;

�
ð2:4Þ

respectively.
For two phase bar, the domain R contains a homogeneous

matrix v ð0Þ and a periodic (or statistically homogeneous) field
X ¼ ðv iÞ of identical inclusions v i � v ð1Þ with indicator functions
Vi (v ð0Þ [ v ð1Þ ¼ R; v ð0Þ \ v ð1Þ ¼ £) and length 2a, e.g.
v0 ¼ fx : jxj < ag. For statistically homogeneous field X, we con-
sider a dilute approximation when interaction of inclusions
v i � v ð1Þ are absent, and the peridynamic horizon lc is chosen to
be smaller than the spacing separating the inclusions. For the peri-
odic field X, the mentioned restriction is eliminated. For any two
points x and x̂ in R;CðnÞ ¼ Cðx; x̂Þ (n ¼ x� x̂) is given by the formula
(v i � v ð1Þ; i ¼ 0;1;2; . . .)

Cðx; x̂Þ ¼

Cð1Þðx; x̂Þ; for x; x̂ 2 v i;

Cð0Þðx; x̂Þ; for x; x̂ 2 v ð0Þ;

Ciðx; x̂Þ; for x 2 v i; x̂ 2 v ð0Þor x 2 v ð0Þ; x̂ 2 v i;

0; for jx� x̂j > lc;

8>>>><>>>>:
ð2:5Þ

which can also be presented in the form

Cðx; x̂Þ ¼ Cð1Þðx; x̂ÞV ð1ÞðxÞV ð1Þðx̂Þ þ Cð0Þðx; x̂ÞV ð0ÞðxÞV ð0Þðx̂Þ
þ Ciðx; x̂Þ½V ð1ÞðxÞV ð0Þðx̂Þ þ V ð0ÞðxÞV ð1Þðx̂Þ�; ð2:6Þ

where V ðkÞðxÞ is an indicator function of v ðkÞ equals 1 at x 2 v ðkÞ and 0

otherwise (k ¼ 0;1Þ. The material parameters Cð1Þ and Cð0Þ are
intrinsic to each phase and can be determined through the experi-
ments. Bonds connecting particles in the different materials are

characterized by micromodulus Ci, which can be chosen such that

Cð1Þðx; x̂Þ P Ciðx; x̂Þ P Cð0Þðx; x̂Þ, or

Ciðx; x̂Þ ¼ ðCð0Þðx; x̂Þ þ Cð1Þðx; x̂ÞÞ=2; ð2:7Þ
Ciðx; x̂Þ ¼ min½Cð0Þðx; x̂Þ;Cð1Þðx; x̂Þ�; ð2:8Þ
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