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Meshless methods have long been a topic of interest in computational modelling in solid mechanics and
are broadly divided into weak and strong form-based approaches. The need for numerical integration in
the former remains a challenge often met by using a background mesh or complex stabilised nodal
approaches. It is only strong form-based point collocation methods (PCMs) which dispense with meshing
and integration entirely, and for this reason PCMs remain of interest. In this paper, a new point colloca-
tion method is developed which is based on maximum entropy basis functions which bring benefits in
terms of accuracy and efficiency. These basis functions possess non-negativity and a weak Kronecker
delta property which decreases the errors on boundaries to improve overall accuracy of solutions.
After a discussion of implementation issues in the new method, numerical examples are presented,
including 1D and 2D problems with linear elasticity and Poisson PDEs, on both convex and non-
convex domains to show the performance. Comparisons of convergence properties with respect to accu-
racy and computational cost (both CPU time and floating point operations) are made with an existing
method, the reproducing kernel collocation method (RKCM), to show the effectiveness of the proposed
method. In all examples, higher order convergence rates are obtained using the developed method with
increasingly reduced computational effort for higher levels of accuracy due to the fundamental
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advantages.
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1. Introduction

Computational solid mechanics has been dominated by meth-
ods based on weak forms for decades, the prime examples being
the finite element method (FEM) and the boundary element
method (BEM). Many of the difficulties met in using these weak
form methods relate to the need for the problem domain to be dis-
cretized into a mesh; the generation of the mesh may itself be a
major computational problem in 3D, while the performance of a
mesh during a non-linear analysis can deteriorate due to distor-
tion. Meshless weak form-based methods, developed since the
1990s, have been seen as a potential solution to this problem (for
a comprehensive review, refer to [1]) and include the element-
free Galerkin method (EFGM) [2,3], the Meshless Local Petrov-
Galerkin method [4] and reproducing kernel particle methods
(RKPMs) [5]. These weak-form based meshless methods have been
successfully used to model problems involving large deformations
[6], crack propagation [7-10] and non-linear materials [11,12].
Despite many positive aspects such as improved accuracy, weak-
form based meshless methods have yet to rival finite elements in
commercial codes largely due to their computational cost. In
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addition, some meshless methods have been criticised for not actu-
ally being truly meshless as a background grid is needed for inte-
gration. To counter this criticism, direct nodal integration has
been developed (e.g. [13]) and some initial issues with instability
and low accuracy have been addressed, such as in the stabilized
conforming approach in [14].

Strong form-based meshless methods based on point colloca-
tion offer the possibility of mesh-free methods with low computa-
tional cost and have in the past been labelled as “truly meshless”
[15-19]. They are straightforward to implement and remove
entirely the complexities associated with domain integration
[20,21]. These methods discretize a problem domain into colloca-
tion (or “data”) points at which the PDE is approximated using
basis functions associated with a different set of points (the source
points or “centres”). Boundary conditions are imposed directly on
boundary points and a linear system is derived in which the field
variable values at source points are the initial solution. An early
example of this type of method is due to Kansa [15,16] who
employed radial basis functions (multiquadrics) and in later work,
a radial basis collocation method was used to solve singularity
[22], and higher order problems [23]. More recently, other mesh-
less collocation methods have been proposed such as schemes with
the moving least squares basis for solutions to the incompressible
Navier-Stokes (NS) equations in the velocity-pressure formulation
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[24]. This standard collocation meshless solver has been improved
to address laminar flow problems and multiple complex-geometry
problems in 2D [25]. However, the condition number of the dis-
crete system formed using radial basis function-based collocation
was found to be large and additional approaches [26] have been
developed to address this ill-conditioning problem. Alternative
strong form collocation frameworks have been used to solve prob-
lems defined by PDEs using basis functions obtained by the repro-
ducing kernel approximation [27], where the method is generally
referred to as the reproducing kernel collocation method (RKCM).
RK-based methods automatically satisfy consistency requirements
(similar to completeness in finite elements) assuring algebraic con-
vergence rates [28,29]. While isogeometric methods are usually
associated with finite elements, they have made an appearance
in collocation methods, first in [30], the aim being to exploit the
smoothness properties of NURBS-based basis functions. Different
methods are proposed for the generation of optimal locations for
collocation points in these methods in [31] and the computational
efficiency of these methods is compared with Galerkin methods
in [32].

It is important to note that in strong form point collocation
methods (PCMs), higher derivatives of the basis functions are
required than would typically be the case, for the same problem,
in a weak form-based method such as the EFGM. Although approx-
imation schemes such as moving least squares (MLS) and repro-
ducing kernels are smooth, the analytical determination of higher
derivatives required for PDEs such as elasticity are complex, and
their step-by-step calculation is time-consuming. Basis functions
derived using the standard RKPM require the inversion of moment
matrices (as do equivalent MLS-based functions). This inversion
feature complicates matters when calculating basis function
derivatives to first and second order especially in multidimen-
sional problems, increasing the computational cost. Evidence of
this can be found in [33,34] and to address it, some novel formula-
tions have been devised such as a gradient RKPM [35] where the
calculations of the basis function derivatives are simplified, differ-
ential reproducing kernel interpolation (DRK) [36,37] and a fast
MLS approach [38] in which novel efficient algorithms are used
to enhance the efficiency of the derivative calculations. Another
source of computational cost comes from the observation that for
optimal convergence more collocation points than source points
are required, forming an overdetermined system [35,21] which
must be solved in, say, a least squares sense rather than directly.
Despite these shortcomings, the RKCM is straightforward to imple-
ment and has been an important tool for the analysis of engineer-
ing problems [39,40]. However, numerical results sometimes suffer
from instability and accuracy issues. A key contributor to these
errors is in the imposition of essential boundary conditions [41],
as is the case with MLS and RK-based meshless methods of all
types.

In this paper, we tackle the latter source of error by making use
of maximum-entropy (max-ent) basis functions. These are derived
from classical information theory [42] and the max-ent principle
[43]. Two key characteristics of max-ent basis functions are non-
negativity and the satisfaction of the weak Kronecker-delta prop-
erty on the boundaries. The former property makes the approxima-
tion schemes non-negative (convex) [44| and the max-ent basis
functions smoother in contrast with other basis functions with
negative values. The latter facilitates the imposition of essential
boundary conditions accurately because the Kronecker-delta prop-
erty on the boundary points makes the essential boundary fully
satisfied. In this case “weak” means that the max-ent basis func-
tions for points inside the domain do not possess the Kronecker-
delta property [45]. Max-ent basis functions with compact support
are derived using weight functions [46] in which the first and sec-
ond order reproducing conditions are viewed as constraints. The

resulting approximations retain the same order of reproducing
conditions, namely the first and second order max-ent basis func-
tions [44,47]. Reviews of weak form-based meshless methods
using max-ent basis functions can be found in [48-51]. Max-ent
basis functions are also used to couple the FEM and the EFGM in
[52]. With the satisfaction of a weak Kronecker-delta property in
max-ent basis functions, the imposition of essential boundary con-
ditions can be carried out directly. There remain some issues with
the imposition of Neumann boundary conditions, however,
because the Lagrange multipliers in the expression of the first
max-ent basis function derivatives blow up for points on the
Neumann boundary which makes the first derivative values
indeterminate [53]. This is an open problem beyond the scope of
this paper. As indicated above, max-ent approximation has only
been used to date for weak form-based meshless methods and in
this work, local max-ent basis functions are used in a simple
PCM. Considerable computational efficiency is demonstrated for
the presented method as compared to a PCM based on RK basis
functions.

The structure of this paper is as follows. Section 2 provides a
brief review of the basic theory of PCMs, the expressions for local
max-ent basis functions and their derivatives. Implementation
issues associated with the max-ent PCMs are presented in Sec-
tion 3. In Section 4, the proposed method is applied to some
numerical examples to validate the approach. Final remarks are
collected in Section 5.

2. Background
2.1. Review of point collocation methods

The theoretical background now presented is based on two-
dimensional spatial domains but it is straightforward to modify
for other dimensionalities. Consider a two-dimensional problem
domain Q bounded by boundary I' (I' =1, nI%) as shown in
Fig. 1. The collocation points and source points (numbering N,
and N; respectively) are distributed in the domain Q and on the
boundary I'. The collocation points are distributed to enforce the
governing PDE and corresponding boundary conditions which are
satisfied at each collocation point. The surrounding source points,
which fall in the local support domain of each collocation point,
are used for the construction of the basis functions and determine
the approximation of the solution over the domain. The governing
PDE and the two types of boundary conditions are described as

$u:fb in Q, (13)
2u=g onT,and Zu=h onT, (1b)

where % is the differential operator in Q, %, and ¥, are the
differential operators for the Dirichlet and Neumann boundary

jth collocation point X collocation points

o source points

support domain of
jth collocation point

Fig. 1. A problem domain with boundary conditions in PCMs.
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