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a b s t r a c t

A computational scheme for the analysis of damage localization in heterogeneous ductile materials in the
case of non-separated scales is presented. The consistent linearization of nonlocal damage models of inte-
gral type at finite strains is addressed and the influence of nonlocal interactions on the homogenized
material response is investigated. The constituents and phases of the material at the microstructural rep-
resentative volume element (RVE) level are modeled with a nonlocal elasto-plastic isotropic damage
model. The numerical integration of the constitutive equations within a nonlinear homogenization prob-
lem is described in detail. The scheme is applied to the simulation of ductile damage and the influence of
the nonlocal averaging procedure, which can be evaluated at different configurations and include non-
local interactions between different phases, is analysed. The quadratic rate of convergence of the
Newton-Raphson iterative procedure is demonstrated and the capability to alleviate the pathological
mesh dependence is illustrated through microstructural examples.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The prediction of the mechanical behavior of heterogeneous
ductile materials undergoing finite strains and subjected to arbi-
trary conditions, possibly leading to damage and failure, is extre-
mely important for a wide variety of applications including
structural engineering, forming operations, collision of solids,
among others. Therefore, considerable efforts have been made to
understand the deformation behavior of these materials and to
develop constitutive models which are able to capture the experi-
mentally observed response. Several macroscopic constitutive
models, based on either micro-mechanical information [1–4] or
phenomenological assumptions [5,6], have been proposed. They
usually introduce an appropriate set of internal variables, whose
growth is governed by evolution laws, to represent the underlying
dissipative mechanisms (such as plasticity or damage). Although
these constituive models have proved their merit over a wide
range of applications, they do not explicitly account for the
microstructural morphology or the interaction between different
constituents. This can be particularly important for materials with
complex microstructures undergoing complex loadings.

An alternative strategy consists in using a confined model of the
microstructure, usually known as unit cell or representative vol-

ume element (RVE), which incorporates all statistically relevant
microstructural features, to capture the material constitutive
response [7–9]. The so-called micromechanical approach requires
the solution of a boundary value problem of the RVE based on
the knowledge of the macroscopic deformation tensors and inter-
nal variables, to obtain the macro stress from a homogenization
procedure. The behavior of the different constituents and phases
at the RVE level is typically modelled by local continuum constitu-
tive models following the formalism of thermodynamics with
internal variables.

The evolution of the dissipative mechanisms at the microscale
may lead to the onset of macroscopic material failure. Therefore,
several multiple scale approaches have been presented in the last
years to link the evolution of the microscopic fields with macro-
scopic failure [10–13]. Here, focus is placed on homogenization-
based multi-scale constituive models, also known as FE2, where
the macroscopic stress and strain tensors are defined as volume
averages of their microscopic counterparts over a Representative
Volume Element (RVE) of material [14–17]. These constituive mod-
els are based on the nested solution of two coupled problems, one
at a macroscale and other at the micro-scale.

The description of the deformation behaviour of the material
close to rupture, for all constituive approaches, is typically per-
formed by the introduction of damage variable(s) that quantify
the loss of load carrying capacity due to the presence and evolution
of defects at finer scales. Unfortunately, the use of constitutive
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models inducing softening within a local continuum framework
can lead to the loss of ellipticity of the governing equilibrium equa-
tions after the onset of strain-softening. Consequently, the bound-
ary value problem becomes ill-posed and the associated finite
element solution becomes dependent of the spatial discretization
[18–22]. In order to minimize this mesh dependence pathology,
several non-local approaches have been developed over the last
years. The main idea behind these formulations is to introduce
an intrinsic length into the standard constitutive models in order
to properly define the localization zone. Two different approaches,
within the context of non-local formulations, can be found in the
literature: gradient-type and integral-type theories [23–30].

In the gradient-type nonlocal strategy, an additional equation is
added to the structural problem - the diffusivity equation - and the
non-local variable is considered as an additional unknown of the
global problem, which requires additional constraints to have a
well-posed problem. Therefore, the modelling of different materi-
als within the same structure can be very challenging due to the
need to introduce additional boundary constraints and the
increased size of the problem. On the other hand, this strategy
keeps the material constitutive level unchanged, which can be an
advantage. In contrast, the non-local approach of integral-type fol-
lows a distinct philosophy. The non-locality effect is embedded at
the material level instead of the structural domain. Hence, no mod-
ifications are required at the global problem. However, whenever a
new constitutive model is developed, it is necessary to redefine the
constitutive equations to comply with the non-local integral-type
rules. Over the last decades, while the non-local model of
gradient-type has been the focus of many studies and has been sig-
nificantly developed [23–26], the non-local method of integral-
type has received less attention. Recently, this approach has been
extended for elasto-plastic materials [27–29] and to finite strains
[30], where the derivation of a closed form for the material tangent
modulus has widened the range of applicability of non-local mod-
els of integral-type.

In homogenization-based multi-scale constitutive models, the
lack of objectivity of the solution may arise from either macroscale
or microscale domains. This has triggered an interesting discussion
about the applicability of first-order homogenization schemes and
the existance of a RVE [31]. Second-order multiscale models [32],
by naturally introducing size effects into the homogenization pro-
cedure, are capable of capturing moderate localization at the
macroscale [33]. Other techniques have also been proposed by sev-
eral authors. Gitman et al. [34] introduced a coupled-volume strat-
egy for quasi-brittle materials, where the RVE size is directly
related to the macro-elements size, which allows the elimination
of both macro-level mesh and meso-level cell size dependence.
Nguyen et al. [35] have shown that with an alternative homoge-
nization procedure, where the averaging procedure is carried out
on the damaged zone, a RVE can be defined for concrete-like mate-
rials undergoing softening. A multiscale failure model for concrete
was later proposed [36]. In these works, a gradient enhanced dam-
age model is used at the microscale to overcome mesh depen-
dency. Fish et al. [37] have proposed a multiscale model for
heterogeneous materials (at small strains) that combines
reduced-order homogenization with an integral nonlocal
formulation.

The modelling of damage localization and the transition
between different scales is still a challenging task [38–42] since
when localization occurs, the separation of scales is intrinsically
violated. Nevertheless, the need to regularize the solution at the
meso-level in the presence of strain softening is unavoidable in
order to obtain meaningful results. Therefore, several strategies
have been proposed [31,34,36] to avoid the loss of ellipticity in
constitutive models at the onset of strain softening. Nevertheless,
these approaches are based on gradient-type non-local formula-

tions and have been mainly applied for quasi-brittle materials.
Therefore, the main goal of this contribution is to present a compu-
tational scheme for the analysis of damage localization in ductile
heterogeneous materials at finite strains with non-separated
scales. This strategy is based on an elasto-plastic integral-type non-
local formulation where the damage evolution is driven by the
level of equivalent plastic strain and each nonlocal variable is com-
puted using a different nonlocal kernel function. Particular atten-
tion is given to the numerical implementation of the framework
within an implicit quasi-static finite element scheme and emphasis
is given to the consistent linearization of the problem at finite
strains. The influence of nonlocal interactions on the homogenized
material response is investigated and the ability of the nonlocal
theory of integral type to minimize the mesh-dependence pathol-
ogy at the meso-level equilibrium problem is assessed for several
RVE sizes and distinct realizations, under different boundary
conditions.

The work is organized as follows. In Sections 2 and 3, we briefly
revise some general concepts and definitions of the multiplicative
hyperelasto-plasticity framework and the micromechanical
homogenization strategy that will be used in this contribution.
Then, in Section 4, the main ingredients of non-local methods of
integral type are introduced. For more details see references
[23,20,43,29]. A non-local framework of integral type is proposed
for heterogeneous media modelled by means of isotropic explicit
damage models, in Section 5. The numerical treatment of the inte-
gration algorithm and the derivation of the consistent tangent
operator for a non-local explicit damage model, within a nonlinear
homogenization problem, is presented in Section 6. In Section 7 the
proposed numerical framework is assessed by means of two
numerical examples. Finally, a study of the influence of the RVE
size and boundary conditions on the non-local damage is con-
ducted in Section 8. The present contribution finishes with some
remarks and conclusions in Section 9.

2. General kinematics of hyperelastic-based multiplicative
plasticity

In this section, a brief review of some important definitions that
will be employed in forthcoming sections is presented. A more
detailed discussion of the multiplicative hyperlasto-plasticity
framework can be found in [44–48]. The deformation gradient, F ,
can be decomposed in the product

F ¼ FeFp; ð1Þ
where Fe and Fp are, respectively, the elastic and plastic defor-
mation gradients. The multiplicative split of F assumes the exis-
tence of a local unstressed intermediate configuration that
corresponds to a deformed configuration which has been elasti-
cally unloaded.

The polar decomposition can be straightforwardly employed
within the multiplicative framework and we obtain the following
useful relations:

Fe ¼ ReUe ¼ V eRe; ð2Þ
Fp ¼ RpUp ¼ VpRp; ð3Þ
where Re, Ue and Ve are the elastic rotation, right and left stretch
tensors, respectively. Likewise, Rp, Up and Vp are named the plastic
rotation, right and left stretch tensors.

The velocity gradient, which can be defined as

L � _FF�1; ð4Þ
may also be expressed in terms of Fe and Fp:

L ¼ Le þ FeLp Feð Þ�1 ð5Þ
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